首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
潘林 《测绘学报》2020,49(5):668-668
全球导航卫星系统(GNSS)提供多频信号,多频融合已经成为一种趋势。在精密钟差估计(PCE)的过程中,卫星钟差参数会吸收卫星端稳定的伪距偏差和时变的相位偏差,这些偏差均与频率相关。因而使用不同的观测值进行PCE时,得到的卫星钟差估值是不同的,它们之间的差值被定义为频率间卫星钟偏差(IFCB)。按组成成分,IFCB可以分成伪距相关的IFCB(CIFCB)和相位相关的IFCB(PIFCB)两部分。国际GNSS服务(IGS)提供的精密卫星钟差产品是基于双频消电离层(IF)组合观测值生成的。由于IFCB的存在,导致IGS卫星钟差产品不能直接应用于多频精密单点定位(PPP)。IFCB的精确考虑已经成为多频PPP的一个关键问题。本研究旨在对IFCB特性和估计方法开展系统深入的研究,并评估其对多频PPP解的影响。  相似文献   

2.
全球导航卫星系统(GNSS)参考网多用于估计卫星轨道/钟差、监测地表形变和速度场、确定精密地球自转参数等方面。相关数据处理模式包括:双差基线解(DD)和非差精密单点定位(PPP)等。本文首先从GNSS基本观测方程出发,通过选取两组基准参数,导出了上述两模式下的列满秩观测方程,然后分析了它们的不足,例如:相位偏差在DD模式中吸收了钟差,丧失了时不变特性;模糊度在PPP模式中吸收了相位偏差,失去了整数性。基于上述分析,本文提出了一种新的参考网数据处理方案,以充分融合DD和PPP模式的优势。它的关键策略是精选基准参数,以达到消秩亏的目的,具体优点体现在:相位偏差独立可估,若合理约束为时不变参数,可充分减少参数个数,提高网解精度;待估模糊度具备整周特性,经由模糊度固定,可改善网解可靠性。  相似文献   

3.
对基于历元间差分相位和非差伪距观测值的混合差分卫星钟差估计方法进行了改进,实现了多模全球导航卫星系统(Global Navigation Satellite System,GNSS)卫星钟差联合快速估计。选择了全球分布的50个跟踪站进行实验,对卫星钟差精度进行了分析和精密单点定位(Precise Point Positioning,PPP)验证。结果表明:多模卫星钟差与武汉大学提供的最终精密卫星钟差互差优于0.2 ns,精密单点定位结果与武汉大学发布的最终精密卫星轨道和钟差产品的定位精度相当。  相似文献   

4.
GNSS非差非组合精密单点定位的理论方法与应用研究   总被引:2,自引:1,他引:1  
张宝成 《测绘学报》2014,43(10):1099-1099
由美国GPS,俄罗斯Glonass,欧盟Galileo和中国“北斗”联合组成的全球导航卫星系统(Global Navigation Satellite System, GNSS)现已广泛地服务于地球和空间科学领域。最优地融合各类GNSS的观测数据,以快速、准确地估计位置、速度、时间、大气等参数是当前和未来阶段的研究热点。为实现此目的,本文对精密单点定位(Precise Point Positioning, PPP)技术实施了一系列的改进,完善了其模型算法,弥补了其技术缺陷,拓展了其应用范围。本文的研究主线安排如下:完善标准PPP的模型和算法。自被提出至今,PPP技术较多地采用“消电离层组合”的非差伪距和相位作为基本观测量。在观测域消除电离层将放大多路径效应,且不便于约束电离层延迟的时空变化。为此,本文提出基于GNSS原始观测值的“非组合”PPP概念,以克服上述不足。其中,电离层延迟被作为一类待估参数,其短期变化被合理地模型化为随机游走过程。同时,顾及了卫星姿态异常对改正两类系统误差(即相位绕转和卫星相位中心偏差)的影响。与标准PPP相比,非组合PPP的收敛时间较短(特别是高采样率观测数据),参数解可靠性更高。特别地,非组合PPP能提供准确的电离层信息,可作为利用GNSS研究电离层的一种新手段。丰富参考网的数据处理理论。与实时动态相对定位(RTK)相比,标准和非组合PPP存在一个共同的缺陷:无法实现整周模糊度固定,导致收敛时间过长。其根本原因在于,PPP的模糊度参数中吸收了卫星相位偏差,因此不再具备整周特性。为此,先后有研究提出利用全球或区域GNSS参考网估计卫星相位偏差,以用作PPP的额外改正信息。本文将现有参考网数据处理方法归纳为3类,推导了它们的模型等价性,并概括了它们的实施差异。特别地,本文详细地分析了3类方法的典型不足,如侧重于处理双频观测值,无法有效地提供电离层改正等,由此掣肘了它们在未来多频、多模观测条件下的适用性,同时也难以实现单频PPP模糊度固定。本文提出一种直接处理非差、非组合GNSS观测值的参考网函数模型,即非组合模型。为确保参数的可估性,采用S基理论识别了设计矩阵的列秩亏,以便于将部分参数定义为S基准,同时确保:1. 可估的(接收机和卫星)伪距和相位偏差仍均具备时不变特性;2. 可估的模糊度仍保留整周特性,互相独立且数量最多。在滤波实施中,当相邻历元所定义的S基准发生改变时,为确保滤波连续,还需要采用S转换对上一历元的滤波值实施等价变换。非组合模型具备处理不同范围(全球、广域和局域)参考网数据的能力。针对某类参考网,还可以灵活地处理单频、双频和多频数据。基于某局域网的双频GPS数据,本文利用非组合模型估计了卫星钟差、卫星相位偏差和电离层延迟,并重点考察了卫星相位偏差的稳定性和电离层延迟的内插效果。进而,分别验证了单频和双频PPP模糊度固定的效率和静、动态定位精度。此外,采用非组合模型分析若干零/短基线的双频GPS数据,估计了两台接收机的相对仪器偏差,并发现了其中较为显著的短期变化趋势,进而否定了有关接收机仪器偏差在1-3天内不随时间变化的一般性认知。概括而言,本文对PPP算法的研究紧扣未来多频、多模的应用需求,并确保能提供高精度的单频服务。从改善单测站PPP性能的角度出发,引申出一种更为实用的参考网数据处理模型,最终促进了单测站PPP模型算法的完善和应用范围的扩展。  相似文献   

5.
由于北斗地球静止轨道(geostationary earth orbiting,GEO)卫星轨道精度较低且其观测值受多路径误差和伪距偏差影响严重,目前各分析中心尚未针对北斗GEO卫星提供长期稳定的相位小数偏差(uncalibrated phase delay,UPD)产品,北斗精密单点定位(precise point positioning,PPP)模糊度固定技术研究主要针对倾斜轨道(inclined geosynchronous orbiting,IGSO)和中地球轨道(medium earth orbiting,MEO)卫星。本文采用Wanninger和Beer的高度角模型消除了IGSO/MEO观测值伪距偏差,并通过小波变换提取低频分量修正伪距观测值的方法削弱了GEO卫星多路径和伪距偏差的影响。由于窄巷UPD估值受未模型化误差影响较大,本文改进了窄巷UPD估计的策略,该策略利用上一历元成功估计的窄巷UPD对当前历元的浮点模糊度进行改正,剔除了残差较大的浮点模糊度,修正固定错误的整周模糊度,从而提高了窄巷UPD的精度和稳定性。利用估计得到的UPD产品,本文实现了联合GEO、IGSO和MEO卫星的北斗非差PPP模糊度固定,并对其定位性能进行分析。结果表明:联合GEO、IGSO和MEO卫星的PPP固定解的首次固定时间和收敛时间均可以缩短到30 min以内;6 h后的E、N、U方向的定位误差由(1.35、0.35、2.75)cm减少到(1.07、0.26、2.24)cm,分别减少了20%、27%和18%。  相似文献   

6.
随着精密单点定位技术的发展,对于精确的卫星坐标以及卫星钟差改正精度的要求越来越高,精密卫星星历以及精密卫星钟差的求解成为制约精密单点定位技术发展的瓶颈。本文基于修复周跳的载波相位观测值与相位平滑伪距观测值,采用无电离层延迟星间单差精密卫星钟差估计模型,在先估计出整周模糊度后,进行了精密卫星钟差的估计,并采用与IGS事后精密钟差作二次差的方法进行精度分析,这对于提高精密单点定位精度具有一定的意义。  相似文献   

7.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

8.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

9.
为了充分利用各频率观测值信息,提出了一种非差非组合的北斗卫星导航系统长距离基准站间整周模糊度解算方法。首先,直接利用不同频率的观测值建立误差观测方程,并采用随机游走策略估计相对天顶对流层湿延迟误差和电离层延迟误差,增加历元间的约束;然后,采用一种非差整周模糊度实时线性计算方法,依次得到基准站网当前历元所有卫星的非差整周模糊度,解决了在基准星变换时,模糊度需要承接或者重新进行法方程叠加的问题;最后,使用实测数据进行方法验证,结果表明,各基准站模糊度平均固定速度为20个历元(采样间隔1 s),可快速实现基准站载波相位整周模糊度解算。由于所提方法充分利用了各频率观测值信息,避免了线性组合放大噪声对整周模糊度固定的影响,其模糊度固定成功率与无电离层组合法相比有较大的提高。  相似文献   

10.
基于GPS双频原始观测值的精密单点定位算法及应用   总被引:9,自引:2,他引:7  
本文提出一种基于GPS双频原始观测值的PPP算法,与基于消电离层组合观测值的传统PPP算法不同,新算法通过参数化站星视线方向的电离层延迟以消除其对PPP估值的不利影响;该新算法可以有效避免观测值组合过程所引起的观测数据噪声以及多路径效应被放大的不利影响;同时在利用扩展卡尔曼滤波模型进行未知参数的递归估计过程中,通过对大气延迟参数引入符合实际的约束,可以加快滤波收敛,提高参数估值的可靠性;视线方向电离层延迟可与其他未知参数同时估计得到,进而便于利用PPP技术进行精密电离层研究;此外,对于可能的模型误差(如码观测值粗差、相位观测值周跳等),基于DIA的质量控制策略以消除或削弱其对参数估值的不利影响。利用实测数据对新算法在静态、低动态以及高动态定位应用方面的精度进行检验,结果表明,静、动态定位结果的外符合精度可分别达到1~2 cm和7~8 cm,验证了新算法的可行性和有效性。  相似文献   

11.
This study provides a systemic analysis to identify the biases in estimated satellite clocks and illustrates their effects in precise point positioning (PPP). First, the precise satellite clock estimation method considering pseudorange and carrier phase hardware delays is derived. Two methods for satellite clock estimation are compared, and their equivalency is discussed. The results show that apart from the well-known constant code hardware biases, the time-variant phase hardware biases are also absorbed by the estimated clocks. Also, the satellite clocks contain biases caused by modeling errors. To analyze the effects of these biases, they are grouped into initial clock biases (ICBs) and time-dependent biases (TDBs). Then, a detailed analysis of the impact of the biases on PPP-based troposphere and coordinate estimates is conducted. The experimental analysis demonstrates that TDBs affect positioning and tropospheric estimates, and their impacts are more significant in the static mode. The ICBs affect coordinate accuracy, zenith total delay mean bias, and its standard deviations only at the millimeter level for kinematic and static PPP, which is negligible. However, the ICBs affect the convergence period for both static and real kinematic PPP, and the magnitude of their impact largely depends on data quality. Note that satellites clocks are generally estimated with the P1/P2 and L1/L2 ionospheric-free combinations, and that hardware-specific parts of ICBs and TDBs cancel if users employ the same type of observables as the clock providers. Otherwise, the effects of biases cannot be ignored, especially for triple-frequency applications. Also, modeling-specific parts of ICBs and TDBs are significant in real-time clocks, which also affect user applications. Our conclusion is applicable for understanding the effects of these biases.  相似文献   

12.
探讨了精密单点定位的基本原理、处理方法、所涉及的误差改正及数据处理中的一些关键技术;采用直接内插IGS卫星精密星历的方法代替利用IGS跟踪站进行轨道精化方法计算卫星轨道参数,对现有精密单点定位计算方法进行了简化,使之更具有实用性。最后利用自主研发的精密非差单点定位软件计算和分析了实测数据。计算结果表明,经过大约15 min的初始化后,非差相位单历元的定位结果精确度在X,Y,Z方向上均优于20 cm。  相似文献   

13.
GPS非差相位精密单点定位技术探讨   总被引:77,自引:12,他引:77  
探讨了精密单点定位的基本原理,处理方法,所涉及的误差改正及数据处理中的一些关键技术;采用直接内插IGS卫星精密星历的方法代替利用IGS跟踪站进行轨道精化方法计算卫星轨道参数,对现有精密单点定位计算方法进行了简化,使之更具有实用性。最后利用自主研发的精密非差单点定位软件计算和分析了实测数据。计算结果表明,经过大约15min的初始化后,非差相位单历元的定位结果精确度在X,Y,Z方向上均优于20cm。  相似文献   

14.
卫星钟差解算及其星间单差模糊度固定   总被引:1,自引:0,他引:1  
整数相位模糊度解算可以显著提高GNSS精密单点定位(PPP)的精度。本文提出一种解算卫星钟差的方法,通过固定星间单差模糊度恢复出能够支持单台接收机进行整数模糊度解算的卫星钟差,即所谓的“整数”钟差。为了实现星间单差模糊度固定,分别通过卫星端宽巷FCB解算和模糊度基准的选择与固定恢复出宽巷和窄巷模糊度的整数性质。为了证明本文方法的可行性,采用IGS测站的GPS数据进行卫星钟差解算试验。结果表明,在解算钟差时,星间单差模糊度固定的平均成功率为73%。得到的卫星钟差与IGS最终钟差产品相比,平均的RMS和STD分别为0.170和0.012 ns。448个IGS测站的星间单差宽巷和窄巷模糊度小数部分的分布表明本文得到的卫星钟差和FCB产品具备支持PPP用户进行模糊度固定的能力。基于以上产品开展了模拟动态PPP定位试验,结果表明模糊度固定之后,N、E、U和3D的定位精度(RMS)分别达到0.009、0.010、0.023和0.027 m,与不固定模糊度或采用IGS钟差的结果相比,分别提高了30.8%、61.5%、23.3%和37.2%。  相似文献   

15.
Integer ambiguity resolution (IAR) appreciably improves the position accuracy and shortens the convergence time of precise point positioning (PPP). However, while many studies are limited to GPS, there is a need to investigate the performance of GLONASS PPP ambiguity resolution. Unfortunately, because of the frequency-division multiple-access strategy of GLONASS, GLONASS PPP IAR faces two obstacles. First, simultaneously observed satellites operate at different wavelengths. Second and most importantly, distinct inter-frequency bias (IFB) exists between different satellites. For the former, we adopt an undifferenced method for uncalibrated phase delay (UPD) estimation and proposed an undifferenced PPP IAR strategy. We select a set of homogeneous receivers with identical receiver IFB to perform UPD estimation and PPP IAR. The code and carrier phase IFBs can be absorbed by satellite wide-lane and narrow-lane UPDs, respectively, which is in turn consistent with PPP IAR using the same type of receivers. In order to verify the method, we used 50 stations to generate satellite UPDs and another 12 stations selected as users to perform PPP IAR. We found that the GLONASS satellite UPDs are stable in time and space and can be estimated with high accuracy and reliability. After applying UPD correction, 91 % of wide-lane ambiguities and 99 % of narrow-lane ambiguities are within (?0.15, +0.15) cycles of the nearest integer. After ambiguity resolution, the 2-hour static PPP accuracy improves from (0.66, 1.42, 1.55) cm to (0.38, 0.39, 1.39) cm for the north, east, and up components, respectively.  相似文献   

16.
The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain centimeter-level accuracy or to succeed in the first ambiguity-fixing. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. We adopt a single-differenced (SD) between-satellite PPP model to combine the GPS and GLONASS raw dual-frequency carrier phase measurements, in which the GPS satellite with the highest elevation is selected as the reference satellite to form the SD between-satellite measurements. We use a 7-day data set from 178 IGS stations to investigate the contribution of GLONASS observations to both ambiguity-float and ambiguity-fixed SD PPP solutions, in both kinematic and static modes. In ambiguity-fixed PPP, we only attempt to fix GPS integer ambiguities, leaving GLONASS ambiguities as float values. Numerous experimental results show that PPP with GLONASS and GPS requires much less convergence time than that of PPP with GPS alone. For ambiguity-float PPP, the average convergence time can be reduced by 45.9 % from 22.9 to 12.4 min in static mode and by 57.9 % from 40.6 to 17.7 min in kinematic mode, respectively. For ambiguity-fixed PPP, the average time to the first-fixed solution can be reduced by 27.4 % from 21.6 to 15.7 min in static mode and by 42.0 % from 34.4 to 20.0 min in kinematic mode, respectively. Experimental results also show that the less the GPS satellites are used in float PPP, the more significant is the reduction in convergence time when adding GLONASS observations. In addition, on average, more than 4 GLONASS satellites can be observed for most 2-h observation sessions. Nearly, the same improvement in convergence time reduction is achieved for those observations.  相似文献   

17.
Traditional positioning methods, such as conventional Real Time Kinematic (cRTK) rely upon local reference networks to enable users to achieve high-accuracy positioning. The need for such relatively dense networks has significant cost implications. Precise Point Positioning (PPP) on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks, hence providing significant cost benefits especially in remote areas. This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities. Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method. A new method to detect and exclude GPS base-satellite failures is developed. A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position. The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes. The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases. In the kinematic processing cases, failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.  相似文献   

18.
Ambiguity resolved precise point positioning with GPS and BeiDou   总被引:2,自引:1,他引:1  
This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms single-system PPP AR in terms of convergence time and position accuracy.  相似文献   

19.
整数相位钟法精密单点定位模糊度固定模型及效果分析   总被引:1,自引:1,他引:0  
刘帅  孙付平  郝万亮  刘婧  李海峰 《测绘学报》2014,43(12):1230-1237
精密单点定位(PPP)模糊度固定方法有3种:星间单差法、整数相位钟法和钟差解耦法,但目前仅法国CNES公开发布用于整数相位钟法PPP模糊度固定的产品,因此研究基于整数相位钟法的用户端PPP模糊度固定模型很有必要.本文分析了整数相位钟法PPP模糊度固定模型,着重指出该模型与传统浮点解PPP模型的区别;提出一种顾及质量控制的逐级模糊度固定策略用于具体实施PPP模糊度固定.大量动态PPP解算试验表明:与浮点解PPP相比,固定解PPP具有更快的收敛速度且定位精度和稳定性更好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号