首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
四川康定金汤一带的早二叠世地层,通过地层清理发现,前人所测康定金汤石喇嘛剖面和野牛沟剖面的顶、底完整,层序及接触关系清楚,有较丰富的生物化石,岩性特征明显,且有别于金川小区的“东大河组”、“三道桥组”、具备建立岩石地层单位条件。故在本区新建立铜陵沟组。本文对该组层型剖面进行了描述。  相似文献   

2.
新疆若羌县阿热力一带位于东昆仑西段北坡、柴达木盆地西南缘。地层区划隶属于秦祁昆地层区、东昆仑-中秦岭地层分区,该区冰沟群分布广泛。对该区开展区域地质调查、对冰沟群的沉积环境和层序地层进行分析研究具有重要地质意义。在开展区域地质调查中,采用路线调查、剖面测量、实验测试等方法对冰沟群的岩性特征、岩石组合、地球化学特征、古生物特征以及形成时代等进行了系统研究,依据岩石组合特征将其划分为狼牙山组和丘吉东沟组。把该区冰沟群与区域上都兰县冰沟群层型剖面进行了对比,通过对比研究,认为该区的冰沟群与都兰县冰沟群层型剖面具明显可对比性。依据岩性特征、岩石组合特征、古生物特征等,对冰沟群沉积环境进行了分析,认为狼牙山组沉积环境属于潮下较深水陆棚相低能环境;丘吉东沟组属于浅海陆棚相带内缘斜坡沉积环境。并对冰沟群层序地层进行了划分,将其划分为2个Ⅲ级层序,即第一层序(B-1)和第二层序(B-2)。  相似文献   

3.
萧宗正  杨洪连 《地质论评》1989,35(2):151-153
东狼沟组为陈恺、熊永先(1935)在北京西山大灰厂西北创立的地层单位。当时描述不详,未见化石。1985—1986年,我们在研究坨里—大灰厂一带的白垩纪地层时,发现丰富的双壳类、腹足类、介形虫及鱼类等化石。化石群面貌近似于热河生物群,时代可确定为早白垩世早期。同时,对该组岩石、沉积环境也给予了简单叙述。  相似文献   

4.
内蒙古宁城道虎沟地区侏罗纪地层划分及时代探讨   总被引:47,自引:5,他引:42  
任东  高克勤等 《地质通报》2002,21(8):584-591
最近在内蒙古宁城道虎沟村新发现了一些翼龙、蝾螈等重要化石、有关道虎沟化石层的地层层序和时代归属产生了较大的争论。笔者根据野外调查结果和生物地层学资料,讨论了道虎沟化石层的地层层序和时代归属。详尽的区域地层踏勘和实测地层剖面充分显示,道虎沟化石层归属于中侏罗世九龙山组,而不是所谓的义县组;道虎沟化石层与下伏太古宙马鞍山片麻岩而不是土城子组呈角度不整合接触。  相似文献   

5.
玉门市旱峡煤矿中间沟剖面是甘肃西部一条有代表性的侏罗纪地层剖面。通过对中间沟剖面的研究,分析了甘肃西部侏罗系划分与对比存在的争纷,提出了新的划分与对比方案,新命名了中间沟组,修改了原大山口群和博罗群的涵义。   相似文献   

6.
西秦岭关家沟组的沉积环境及其物源   总被引:4,自引:1,他引:3  
西秦岭关家沟组地层中碎屑颗粒的总体粒度呈现向上变粗的韵律性旋回:下段为以泥质岩、砂岩互层为主的典型浊流沉积组合;中段的碎屑颗粒有向上变粗、砾岩层加厚的趋势;上段以厚层砾岩为主,夹薄层块状砂岩,砾岩中砾石含量、粒度大小分别表现出向上增加、增大的趋势。化石组合表明关家沟组为海相地层,进一步推断关家沟组可能为海底扇浊流沉积体系。对关家沟组杂砂岩组分进行了碎屑颗粒百分含量统计及粉砂岩、板岩的地球化学分析,结果表明稀土元素w(La)、w(Ce)、w(ΣREE)和δ(Eu)等特征值与大陆岛弧构造环境的相似。以本区地层斜层理产状及砾石优选方位为依据,结合砾石颗粒大小在横向上的变化,对关家沟组岩层古水流方向综合分析,推测其古水流方向为230°~356°,以北西向为主;砾石的优选方位在228°~338°之间,以北北西向为主。砾石的统计资料表明,由南向北关家沟组砾石具有颗粒由大逐渐变小、磨圆度由差→较好、优选方位由杂乱→较好的变化趋势。结合前人成果,关家沟组处于碧口弧前盆地系统内,推测关家沟组沉积物主要来自南东向的岛弧。  相似文献   

7.
对东秦岭有色金属成矿带中典型矿床赋矿地层的地质地球化学剖面、岩性特征、沉积环境、钼(钨)元素含量、微量元素分布及钼与微量成矿元素相关关系的多元回归分析等研究结果表明,栾川群白术沟、三川、南泥湖、煤窑沟及官道口群龙家园等各组地层是该成矿带中主要控矿层位;滨海相及滞流较深相条件下沉积的陆源碎屑岩类平均含钼(钨)较高,赋矿地层富含钼(钨)可能与继承蚀源区太华群和熊耳群钼、钨高含量有关;钼与钨、锰成显著的正相关,而与铅或锌成负相关;东秦岭赋矿地层的直接标志是钼、钨平均含量均几倍到几十倍地高于它们在地壳中的丰度,该赋矿地层就是矿源层。并分析了主赋矿地层与非主赋矿地层中钼、钨的丰度,证实了矿化与含矿地层之间的内在联系。确认该成矿带中大型铝(钨)层控矿床之赋矿地层既是它们的矿源层,又是它们的围岩,这些含矿地层是形成东秦岭成矿带中大型、特大型钼、钨矿床的物质基础。  相似文献   

8.
依据大量实测剖面资料初步建立了滦平盆地侏罗-白垩系大北沟-大店子组地层格架,证明盆地在两组沉积期为西南高、东北低的簸箕形,两组地层从西南向东北在地层厚度、沉积旋回组成、相序与环境和标志层的分布等方面均发生规律性变化。地层格架不仅有助于研究盆地形成演化、构造应力条件和火山活动,而且可以确定盆地沉降中心,确定建立地层层型的候选剖面。位于盆地沉降中心的张家沟剖面大北沟组-大店子组以扇三角洲前缘半深湖-深湖相深水沉积为主,由5个完整的沉积旋回(SDC)组成。旋回沉积相序大北沟组由滨浅湖相-前扇三角洲半深湖、深湖相-扇三角洲前缘相构成;大店子组明显水体加深,沉积环境相对单一,地层厚度增大,旋回相序由半深湖、深湖相泥页岩、粉砂岩夹砂岩组成,部分层位为扇三角洲前缘的砂、砾岩层。两组沉积较厚,达665m。并且排除了其它剖面上“蜂窝梁砾岩”(辫状河道-分流河道砾岩)对下伏层侵蚀造成的大北沟组顶部沉积间断,以及“玄武安山岩”喷发活动造成的大店子组顶部地层缺失。张家沟剖面沉积连续、暴露完全、化石极为丰富,是建立侏罗-白垩系临界阶陆相层型的研究界线划分的理想剖面。  相似文献   

9.
《甘肃地质》1987,(Z1):28-94,141,144
祁连山区自西向东横贯甘肃。其范围包括河西走廊、北祁连山,在肃南县以西包括中祁连山和南祁连山的一部分,天祝以东以中祁连山与西秦岭相邻。近年来新发现的龙首山区石炭系,因其沉积相、厚度及古生物面貌都与祁连山相近,故也放在本区叙述。 祁连山的石炭系研究已有相当长的历史。早在1893年洛采(Loczy)就发表了他在山丹县东南羊虎沟煤矿的石炭系剖面,剖面分六层,厚75~80m,2、3层采获大量化石。  相似文献   

10.
天格尔峰—艾维尔沟一带处于东、西天山交界部位,长期以来,其地层单元划分、时代归属、分布范围和名称使用均不统一,给天山构造带的研究带来诸多的问题。通过东西6幅1∶5万区域地质调查,在北天山原奇尔古斯套组(天格尔组)分布区域发现了两条不整合面和大量化石资料。结合岩石组合特征、同位素年龄数据、变质-变形作用和沉积背景的差异,进一步将原奇尔古斯套组(天格尔组)解体为上泥盆统天格尔组(狭义)、上石炭统奇尔古斯套组(狭义)、上石炭统后峡组和下二叠统阿尔巴萨依组,并填绘出了各地层单元的分布范围,厘定了测区的构造格局。为东西天山地层单元的对比和构造区划提供了重要依据。  相似文献   

11.
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation.  相似文献   

12.
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation.  相似文献   

13.
To determine the origin, maturity, formation mechanism and secondary process of marine natural gases in Northeastern Sichuan area, molecular moieties and carbon isotopic data of the Carboniferous and Triassic gases have been analyzed. Typical samples of marine gas precursors including low-maturity kerogen, dispersed liquid hydrocarbons (DLHs) in source rocks, residual kerogen and oil have been examined in a closed system, and several published geochemical diagrams of gas origins have been calibrated by using laboratory data. Results show that both Carboniferous and Triassic gases in the study area have a thermogenic origin. Migration leads to stronger compositional and weak isotopic fractionation, and is path dependent. Carboniferous gases and low-H2S gases are mainly formed by secondary cracking of oil, whereas high-H2S gases are clearly related to the TSR (Thermal Sulfate Reduction) process. Gases in NE Sichuan show a mixture of heavy (13C-enriched) methane in comparison to the lower maturated ethane of Triassic gas samples, suggesting a similar source and maturity for ethane and propane of Carboniferous gases, and a mixture of heavy ethane to the propane for Triassic gases. Based on the data plotted in the diagram of Chung et al. (1988), the residual kerogen from Silurian marine shale and palaeo oil reservoirs are the main source for Carboniferous gases, and that the residual kerogen from Silurian and Permian marine rocks and Permian paleao oil reservoirs constitute the principal source of Triassic gases.  相似文献   

14.
鄂尔多斯盆地海相碳酸盐岩层系天然气成藏研究   总被引:7,自引:0,他引:7  
鄂尔多斯盆地两套优质烃源岩,即上奥陶统背锅山组泥灰岩和中奥陶统平凉组中下部页岩,是海相碳酸盐岩层系古油藏原油和现今靖边气田油型气的主要来源。两套优质烃源岩主要分布在盆地的西部和西南部,呈"L"型展布,盆地内部缺失;它们累计厚度约50~350m。平凉泥岩TOC介于0.5%~1.2%,平均0.9%,厚度20~50m,而灰岩TOC主要分布在0.2%~0.4%区间,平均0.3%。背锅山组泥岩有机碳相对较高,TOC介于0.22%~3.3%,平均为0.93%。三叠纪末期,两套优质烃源岩生成的大量液态烃类进入中央古隆起控制的斜坡部位,形成古油藏;侏罗纪-早白垩世,地层持续加深和地温梯度升高,烃源岩热演化程度达到高-过成熟阶段,古油藏温度超过180℃,原油开始热裂解生成天然气。油气的热裂解导致气藏压力不断增大,驱使部分气体进一步扩散运移。晚白垩世燕山运动IV幕,盆地东部大规模持续挤压抬升导致了原有油气藏经历了西高东低转变为东高西低的构造反转,形成构造枢纽。中央隆起带聚集油气的优势被改造,裂解形成的天然气向东或东北方向运移。但是运移过程中,东部盐岩、膏盐、致密碳酸盐岩侧向封堵。在靖边气田中心部位,由于奥陶系顶部缺失石炭系铁铝土岩封盖,使得部分石炭-二叠系生成的天然气沿着不整合面进入风化壳,形成从奥陶系来源的原油裂解气与石炭-二叠系生成的煤型气相混合。  相似文献   

15.
蒲仁海  车自成 《地质论评》1996,42(6):497-507
塔里木盆地东南部中古炭统一下二叠统是一个顶底为Ⅰ类不整合所限定的二级沉积层序。该层序沉积期,塔里木盆地东南部存在三个古陆,两个浅海海峡,一个半深海斜坡。随着海面上升-静止-下降于不同部位形成了不同沉积体系及组合。海进体系域由中上石炭统的滨岸破坏性三  相似文献   

16.
海相低勘探程度地区油气资源评价的难点是资料少、地质认识程度低、主要参数获取难度大,影响评价结果可信性。以柴达木盆地德令哈坳陷石炭系为例,系统评价德令哈坳陷石炭系生储盖条件,油气资源评价选用盆地模拟法与类比法相结合方法,关键参数的确定采用了地球物理、地球化学与石油地质学等多种方法,利用油气运移聚集模拟和不同运聚单元资源量计算结果划分有利勘探区带,充分发挥不同方法的特点。评价结果表明:柴达木盆地德令哈坳陷上石炭统发育有泥岩、碳质泥岩、煤和泥灰岩等4类烃源岩,下石炭统发育泥岩和泥灰岩等2类烃源岩;上石炭统烃源岩有机质丰度较高,克鲁克组多数泥岩、碳质泥岩、煤和泥灰岩TOC含量分别为大于1.0%、6.0%~10.0%、大于60%、大于0.3%,有机质类型主要为Ⅱ和Ⅲ型,少量的Ⅰ型,成熟度均已达到成熟,具有较好的生烃潜力;石炭系发育碎屑岩储层和碳酸盐岩储层,并发育有多套盖层,生储盖组合类型有自生自储自盖式、下生上储上盖式和上生下储上盖式,石油地质条件总体较好;石炭系主要生烃时期为石炭纪晚期—三叠纪中期,生烃高峰时期为二叠纪中期—三叠纪中期;德令哈坳陷石炭系的油气资源量达到3.83×108 t(油当量),石油资源量为1.63×108 t,天然气资源量为2 760.21×108 m3,油气主要分布于欧南凹陷和欧龙布鲁克凸起两个构造单元。  相似文献   

17.
Roderick Impey Murchison named the Permian Period in 1841 based on his work on Lower Permian marine sediments around the city of Perm’, on the west flank of the Ural Mountains. However, he had observed post-Carboniferous red beds earlier, around the town of Vyazniki, west of Moscow, lying above the classic Carboniferous limestones of the Moscow Basin. Murchison's notebooks and papers show that he and colleagues equivocated about the exact age of these red beds, whether latest Permian or early Triassic, but he always favoured the former view. So, his initial observation of the Vyazniki redbeds provided a marker for the top of the Permian and base of the Triassic in the European Russian platform.  相似文献   

18.
新疆准噶尔南缘和吐鲁番盆地二叠─三叠系   总被引:7,自引:1,他引:7  
路线考察新疆吉木萨尔大龙口和吐鲁番盆地两条剖面。剖面层序清楚、出露良好、化石丰富,是研究非海相二曾─三叠系界线的理想地点。吉木萨尔大龙口剖面由上二叠统和完整的三叠系组成大龙口背斜,其北翼地层发育齐全,南翼可观察到世界罕见的二叠─三叠纪生物与沉积过渡层,两系之间孢粉、介形虫、叶肢介、脊椎动物各门类化石丰富,其中晚二叠世晚期新疆吉本萨尔兽与世界公认的早三叠世标准化石水龙兽共生,目前该剖面已推荐为国际非海相二叠─三叠系界线层型候选剖面。吐鲁番盆地是世界著名的地处海平面之下地区,该区桃树园剖面发育完整、出露良好,特点是脊椎动物化石丰富.上二叠统桃东沟群不整合超覆在石炭系火山岩之上,其上,与上二叠统一下三叠统仓房沟群和中一上三叠统连续沉积,侏罗系含煤层整合在三叠系之上.  相似文献   

19.
本文简要介绍了袁复礼教授中学、大学和赴美留学的经历,叙述了在中央地质调查所、北京大学、清华大学、西南联大、北京地质学院及武汉地质学院北京研究生部(后改名中国地质大学)所进行的教学活动,培育了几代人才;在建立中国地质学会、发展我国的考古事业中的开创作用;在西北科学考察中取得的突出成就;在进行基础地质研究和为国家找寻矿产、能源和水利工程建设中做出的重要贡献;在地层古生物学、考古学,特别是发展我国的地貌和第四纪地质学所起的开拓、奠基作用。同时也反映了他的高尚道德和优良学风。  相似文献   

20.
在P—T界线生物大灭绝事件以后的早三叠世早期,上扬子地区广泛沉积了低能环境纹层状微晶灰岩、灰质页岩或条带状灰岩沉积,代表了P—T事件之后早三叠世最早期上扬子地区所处的古特提斯海海洋循环的近乎停滞;该套低能环境静水沉积广泛见于江油、广元、旺苍、重庆等地剖面中。上覆于停滞海洋沉积之上的是角砾状灰岩、扁平砾石灰岩、丘状交错层理颗粒灰岩、沙纹层理粉砂岩等和风暴作用有关的动荡海水沉积;低能环境沉积与动荡海水沉积之间常见冲刷、侵蚀界面,这都反映了上扬子地区从停滞海洋到动荡海洋的地质记录。川西北地区角砾状灰岩分布面积大、成因特殊,而扁平砾石灰岩是早三叠世典型的与风暴作用有关的错时相灰岩。沉积岩石显示的从静水条件到与风暴有关的动荡水条件的环境变化,预示着早三叠世早期生物大灭绝以后不同寻常的古海洋和古气候变化。P—T生物大灭绝可能对早三叠世早期古气候和大气循环起到了显著作用,P—T事件后生物对整个地球系统的调节作用减弱,地球系统向极端情况发展的趋势将得不到有效制约,全球古环境与古气候可能因此变得极端恶劣。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号