首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Western tropical Pacific sea surface temperatures and Pacific Deep Water temperatures during Marine Isotope Stage 3 have been reconstructed from the δ18O and Mg/Ca of planktonic and benthic foraminifera from Marion Dufresne core MD98-2181. This 36 m marine core was collected at 6.3°N from a water depth of 2114 m. With sediment accumulation rates of up to 80 cm/ky, it provides a decadally resolved history of ocean variability during the Last Glacial period. Surface temperatures and salinities at this site varied in close association with millennial-scale atmospheric temperature swings at high northern latitudes as reflected in the GISP2 ice core. At times of colder atmospheric temperatures over Greenland, the western Pacific was more saline and summer season SSTs were ~2 °C colder. These millennial-scale changes within the tropics are attributed to a southward displacement of the summer season ITCZ in response to steeper meridional temperature gradients within the Pacific. The benthic δ18O record from MD98-2181 documents upper Pacific Deep Water temperature and salinity variability. Benthic δ18O variations of 0.3–0.5‰ during MIS 3 indicate deep waters within the Pacific were varying by ~1–1.5 °C, with the possibility that some of the variability was due to changing salinity and minor glacial–eustatic changes. The observed deep-water variability correlates to changes in Antarctic surface temperatures and thus reflects changes in Southern Ocean temperatures at the site of Pacific Deep Water formation. The combined planktonic and benthic records from MD98-2181 thus provide a northern and southern hemispheric climate record of anti-phased variability during MIS 3 as has been inferred previously from ice core records. Furthermore, the deep sea temperature excursions appear to have led millennial variations in atmospheric CO2 as recorded in the EDML ice core by ~1 kyr.  相似文献   

2.
《Quaternary Science Reviews》2004,23(23-24):2485-2500
A detailed tephrostratigraphy supported by accelerator mass spectrometry (AMS) 14C dating and isotopic and geochemical analyses has been carried out for a deep-sea core collected from the Southern Adriatic Sea, which spans the last 18 14C kyr. Fourteen ash layers have been recognized in the marine core and the origin was determined by comparing their age and geochemistry with tephra detected in terrestrial deposits. The geochemical signatures of marine ash layers indicate a prevailing Campanian and subordinate Etnean and Eolian provenances. Collectively, they are attributed to sources in the Phlegraean Fields (LAM-Lagno Amendolare; LN1/LN2-GM1; C-2/NYT-Neapolitan Yellow Tuff; C-1-Agnano Pomici Principali; AMS/PF-Agnano Monte Spina; AST-Astroni), Somma-Vesuvius (L9-Pomici di Base; L8-Greenish), Mount Etna (Et1-Y1-Biancavilla Ignimbrite), Lipari (E-1-Gabellotto-Fiumebianco) and Palinuro seamount (Pal 1). Some of these eruptions have been detected for the first time in marine cores (Astroni, LAM, L9, L8), and three were detected and dated by marine tephra (LN1, LN2, and Pal 1) providing new more precise stratigraphic markers for the last 18  kyr in the South Adriatic marine record.  相似文献   

3.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

4.
《Quaternary Science Reviews》1999,18(10-11):1151-1171
We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes—one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ∼90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.  相似文献   

5.
《Quaternary Science Reviews》2007,26(3-4):500-516
We use lake sediment records from an epishelf lake on Alexander Island to provide a detailed picture of the Holocene history of George VI Ice Shelf (GVI-IS). Core analyses included; micropaleontology (diatoms/foraminifera), stable isotope (δ18O, δ13C), geochemistry (total organic carbon (TOC), total nitrogen (TN), C/N ratios) and grain-size analyses. These data provide robust evidence for one period of past ice shelf absence during the early Holocene. The timing of this period has been constrained by 10 AMS 14C dates performed on mono-specific foraminifera samples. These dates suggest that GVI-IS was absent between c 9600 cal yr BP and c 7730 cal yr BP. This early Holocene collapse immediately followed a period of maximum Holocene warmth that is recorded in some Antarctic ice cores and coincides with an influx of warmer ocean water onto the western Antarctic Peninsula (AP) shelf at c 9000 cal yr BP. The absence of a currently extant ice shelf during this time interval suggests that early Holocene ocean-atmosphere variability in the AP was greater than that measured in recent decades.  相似文献   

6.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

7.
A combination of δ13C and δ18O analyses with U–Th disequilibrium dating on a stalagmite and groundwater from the deep and extensive Arch Cave network on northeastern Vancouver Island has produced a preliminary 12,200 y paleoclimatic profile. Speleothem depositional rates vary from 6 to 41 mm/ka and are consistent with the “Hendy” test for speleothem deposition under high-humidity equilibrium conditions. Relative to present day conditions, warmer periods are indicated at the end of the Younger Dryas, during the Holocene maximum, a possible Medieval Warming event, with the warmest period represented by a narrow peak at 8000 y BP. Relatively cooler periods are recorded at 3500, 8200, 9300 and 11,500 y BP with indications of minor cooling during the Little Ice Age and indications of relatively dry conditions during the earlier part of the Younger Dryas followed by warmer wetter conditions. The profile shows excellent agreement with other paleoclimatic indicators locally, most notably some partial speleothem records from Vancouver Island and Oregon, and some high-resolution global records such as the Greenland ice cores and speleothems from the Hulu Cave, China.  相似文献   

8.
《Quaternary Science Reviews》1999,18(8-9):1021-1038
Time-series O isotope profiles for three U–Th dated stalagmites have revealed that for much of the Holocene, a site on the Atlantic seaboard (SW Ireland) exhibits first-order δ18O trends that are almost exactly out of phase with coupled δ18O curves from two southern European sites (SE France and NW Italy). In the Irish stalagmite (CC3 from Crag Cave, SW Ireland), low δ18O at 10,000 cal yr BP reflects cool conditions. By the early to mid-Holocene (9000–6000 cal yr BP) δ18O had increased, reflecting the onset of warmer conditions on the Atlantic seaboard. This shift to higher δ18O was accompanied by a marked increase in the stalagmite extension rate, reinforcing our interpretation that this was a period of relative warmth. Except for an episode of increased extension rate about 5500 yr ago, δ18O in the Crag stalagmite exhibits a gradual decrease, accompanied by declining extension rates between 7800 and 3500 cal yr BP, interpreted as a cooling trend. There is evidence for increases in both δ18O and stalagmite extension rate in the period from 3500 cal yr BP to the present day suggesting a return to warmer conditions on the Atlantic seaboard. In the stalagmite from NW Italy (ER76, Grotta di Ernesto, Trentino province) the early-Holocene (c. 9200-7800 cal yr BP) is characterised by high δ18O, probably indicative of warm and/or dry conditions. Exceptionally low δ18O from 7800 to 6900 cal yr BP at this site reflects a well-defined wet phase (Cerin wet phase). In the last three millennia, this stalagmite exhibits a shift to lower δ18O, interpreted as some combination of cooler and/or wetter conditions. Unlike the Irish stalagmite, the Italian sample does not show a correlation between δ18O and extension rate. Instead, its extension rate correlates roughly with δ13C, presumably reflecting a climate-driven vegetation change. In the early Holocene, δ18O in the French stalagmite (CL26, Grotte de Clamouse, Herault province, SE France) was low relative to its Holocene average. For much of the period since c. 3500 cal yr BP this stalagmite exhibits higher δ18O than in the early Holocene, suggesting warmer conditions. Like the Irish stalagmite, the French sample exhibits a well-defined correlation between δ18O and extension rate. Had drip-water availability been the dominant control on δ18O at this semi-arid site then higher δ18O would have been accompanied by lower, not higher extension rates. This suggests strongly that temperature rather than rainfall amount was the dominant control at this site. While conclusions regarding the patterns of climate variability on a continent scale must remain tentative because of the limited number of stalagmites studied we argue that early Holocene warm conditions on the Atlantic seaboard (Irish site) coincided with relatively cool conditions at the Clamouse site. By c. 3500 yr ago the pattern appears to have been reversed.  相似文献   

9.
To understand oxygen and carbon stable isotopic characteristics of aragonite stalagmites and evaluate their applicability to paleoclimate, the isotopic compositions of active and fossil aragonite speleothems and water samples from an in situ multi-year (October 2005-July 2010) monitoring program in Furong Cave located in Chongqing of China have been examined. The observations during October 2005-June 2007 show that the meteoric water is well mixed in the overlying 300-500-m bedrock aquifer, reflected by relatively constant δ18O, ±0.11-0.14‰ (1σ), of drip waters in the cave, which represents the annual status of rainfall water. Active cave aragonite speleothems are at oxygen isotopic equilibrium with drip water and their δ18O values capture the surface-water oxygen isotopic signal. Aragonite-to-calcite transformation since the last glaciation is not noticeable in Furong stalagmites. Our multi-year field experiment approves that aragonite stalagmite δ18O records in this cave are suitable for paleoclimate reconstruction. With high U, 0.5-7.2 ppm, and low Th, 20-1270 ppt, the Furong aragonite stalagmites provide very precise chronology (as good as ±20s yrs (2σ)) of the climatic variations since the last deglaciation. The synchroneity of Chinese stalagmite δ18O records at the transition into the Bølling-Allerød (t-BA) and the Younger Dryas from Furong, Hulu and Dongge Caves supports the fidelity of the reconstructed East Asian monsoon evolution. However, the Furong record shows that the cold Older Dryas (OD) occurred at 14.0 thousand years ago, agreeing with Greenland ice core δ18O records but ∼200 yrs younger than that in the Hulu record. The OD age discrepancy between Chinese caves can be attributable to different regionally climatic/environmental conditions or chronological uncertainty of stalagmite proxy records, which is limited by changes in growth rate and subsampling intervals in absolute dating. Seasonal dissolved inorganic carbon δ13C variations of 2-3‰ in the drip water and 5-7‰ in the pool and spring waters are likely attributed to variable degrees of CO2 degassing in winter and summer. The variable δ13C values of active deposits from −11‰ to 0‰ could be caused by kinetically mediated CO2 degassing processes. The complicated nature of pre-deposition kinetic isotopic fractionation processes for carbon isotopes in speleothems at Furong Cave require further study before they can be interpreted in a paleoclimatic or paleoenvironmental context.  相似文献   

10.
Late Pleistocene carbon isotope (δ13C) records from a paleolithic sedimentary sequence collected from Baeki, Hongcheon, central Korea, show long-term changes with superimposed short-term isotopic excursions. The δ13C value of the sedimentary organic matter, a proxy for past vegetation change, varied from ? 26‰ to ? 23‰ for the period between 30 and 90 ka, with a long-term variation similar to insolation changes. High-amplitude (? 1‰ to approximately ? 1.5‰) fluctuations superimposed on the long-term changes in the δ13C values decreased during stronger summer monsoon intervals but increased during the weakened summer monsoon. This millennial-scale pattern is generally similar to Greenland Dansgaard–Oeschger (D–O) cycles. The possible connection between the Hongcheon area, Korea and high latitudes may be explained by atmospheric circulation changing in response to the D–O oscillations in the Northern Hemisphere.  相似文献   

11.
《Quaternary Science Reviews》2003,22(5-7):555-567
Petrographical and geochemical parameters of stalagmites from the B7 cave in Iserlohn–Letmathe (Northern Rhenish Massif, NW Germany) record Late- and postglacial climate changes (temperature and/or precipitation). Fabrics and microfacies of the stalagmite profiles lead to a differentiation of four hierarchies of rhythms. Clastic layers in the stalagmites are caused by flooding events and are time markers. Twenty-four TIMS Th/U-age-dates provide a time calibration of stalagmite growth phases. One stalagmite reveals an early growth period between 17.6 and 16.7 ka BP. Between 9.6 and 5.5 ka BP (Atlantic episode of the Holocene) the growth rate of the stalagmites was higher than before and after this time, with dominant light-porous microfacial laminae and high δ18O and δ13C values representing partly kinetic fractionation effects. This part of the Holocene is interpreted as a mainly warm episode with frequent interruptions of dripping. Within the past 4 ka the profiles with predominant dark compact facies reveal low isotopic values which may be interpreted as a temperature proxy record. The stalagmite records resemble records from an Irish stalagmite. Correlation with the Δ14C record from European tree rings suggests that colder periods in the North Atlantic were accompanied by drier winters in central Europe.  相似文献   

12.
We present a high-resolution terrestrial archive of Central American rainfall over the period 100–24 and 8.1–6.5 ka, based on δ18O time series from U-series dated stalagmites collected from a cave on the Pacific Coast of Costa Rica. Our results indicate substantial δ18O variability on millennial to orbital time scales that is interpreted to reflect rainfall variations over the cave site. Correlations with other paleoclimate proxy records suggest that the rainfall variations are forced by sea surface temperatures (SST) in the Atlantic and Pacific Oceans in a fashion analogous to the modern climate cycle. Higher rainfall is associated with periods of a warm tropical North Atlantic Ocean and large SST gradients between the Atlantic and Pacific Oceans. Rainfall variability is likely linked to the intensity and/or latitudinal position of the intertropical convergence zone (ITCZ). Periods of higher rainfall in Costa Rica are also associated with an enhanced sea surface salinity gradient on either side of the isthmus, suggesting greater freshwater export from the Atlantic Basin when the ITCZ is stronger and/or in a more northerly position. Further, wet periods in Central America coincide with high deuterium excess values in Greenland ice, suggesting a direct link between low latitude SSTs, tropical rainfall, and moisture delivery to Greenland. Our results indicate that a stronger tropical hydrological cycle during warm periods and large inter-ocean SST gradients enhanced the delivery of low latitude moisture to Greenland.  相似文献   

13.
Late Pleistocene paleoclimatic variability on the northeastern Qinghai–Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90–80 ka, 52–38 ka and 10–9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ∼44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.  相似文献   

14.
A total of 233 samples from the upper 16 m of the Toushe peat core retrieved in central Taiwan were measured for TOC and δ13CTOC values. From these samples, 17 selected samples with large δ13CTOC fluctuations were analyzed for n-alkane and δD of the C27 and C29 n-alkanes. Combining with the detailed high-resolution pollen and geochemical records, this study reveals more detailed climatic variations in terms of temperature and precipitation as well as abrupt climatic events during the past 30 Kyrs. Before the Last Glacial Maximum (LGM), climate was cold and damp with predominantly woodland vegetation in Toushe Basin, and turned to cold and dry after 25 Kyr BP. Climatic conditions there were the worst during LGM over the past 30 Kyrs, especially around 23 and 18 Kyr BP when the woodland was diminished and C4 grass was dominated. Although short durations of relatively wet conditions could be found at 17, 16 and 14 Kyr BP, cold and dry climates were prevailing during 29.5–28, 24–22, 17–15 and 13–11.5 Kyr BP, corresponding to Heinrich (H) Events 3, 2, 1, and Younger Dryas (YD), respectively. During the early Holocene, dry climate occurred at ∼11, ∼10, 9.7–9.2 and ∼8 Kyr BP; whereas wet condition appeared at 10.3, 9.8, 9–7.5 Kyr BP. In the middle Holocene, climate kept warm and moderate wet in the first half period, but many dry events existed in the second half following a cold and dry event at 6 Kyr BP. After a sharply warm peak at 5.2 Kyr BP, the climate in Toushe turned to cold quickly, and tree/shrub vegetation disappeared completely with the replacement of C3 grasses. In the late Holocene, climate was relatively wetter with predominant C3 grasses in the basin. Our climatic interpretations based on the peat records agree well with the Greenland ice core and Chinese speleothem records on millennium time scales during the last glacial period. Dry climates corresponding to weakening of the East Asian Summer Monsoon (EASM) during the Heinrich events and Younger Dryas in central Taiwan and eastern China demonstrate the climatic forcing on such long time scales in concert with regional monsoon climate. However, the discrepancies exist between our peat record and the Dongge/Hulu stalagmite record on: (1) the age of H2; (2) climate intensities of LGM and H1; and (3) wetness condition during Holocene. These observations call for further study on high-resolution climatic changes especially on moisture budget in the East Asian monsoonal region.  相似文献   

15.
Compared to the extensively documented ultrahigh-pressure metamorphism at North Qaidam, the pre-metamorphic history for both continental crust and oceanic crust is poorly constrained. Trace element compositions, U–Pb ages, O and Lu–Hf isotopes obtained for distinct zircon domains from eclogites metamorphosed from both continental and oceanic mafic rocks are linked to unravel the origin and multi-stage magmatic/metamorphic evolution of eclogites from the North Qaidam ultrahigh-pressure metamorphic (UHPM) belt, northern Tibet.For continental crust-derived eclogite, magmatic zircon cores from two samples with U–Pb ages of 875–856 Ma have both very high δ18O (10.6 ± 0.5‰) and mantle-like δ18O (averaging at 5.2 ± 0.7‰), high Th/U and 176Lu/177Hf ratios, and steep MREE-HREE distribution patterns (chondrite-normalized) with negative Eu anomalies. Combined with positive εHf (t) of 3.9–14.3 and TDM (1.2–0.8 Ga and 1.3–1.0 Ga, respectively), they are interpreted as being crystallized from either subduction-related mantle wedge or recycled material in the mantle. While the metamorphic rims from the eclogites have U–Pb ages of 436–431 Ma, varying (inherited, lower, and elevated) oxygen isotopes compared with cores, low Th/U and 176Lu/177Hf ratios, and flat HREE distribution patterns with no Eu anomalies. These reflect both solid-state recrystallization from the inherited zircon and precipitation from external fluids at metamorphic temperatures of 595–622 °C (TTi-in-zircon).For oceanic crust-derived eclogite, the magmatic cores (510 ± 19 Ma) and metamorphic rims (442.0 ± 3.7 Ma) also show distinction for Th/U and 176Lu/177Hf ratios, and the REE patterns and Eu anomalies. Combined with the mantle-like δ18O signature of 5.1 ± 0.3 ‰ and two groups of model age (younger TDM close to the apparent ages and older > 700 Ma), two possible pools, juvenile and inherited, were involved in mixing of mantle-derived magma with crustal components. The relatively high δ18O of 6.6 ± 0.3‰ for metamorphic zircon rims suggests either the protolith underwent hydrothermal alteration prior to the ~ 440 Ma oceanic crust subduction, or external higher δ18O fluid activities during UHP metamorphism at ~ 440 Ma.Therefore, the North Qaidam UHPM belt witnesses multiple tectonic evolution from Late Mesoproterozoic–Neoproterozoic assembly/breakup of the Rodinia supercontinent with related magmatic emplacement, then Paleozoic oceanic subduction, and finally transition of continental subduction/collision related to UHP metamorphism.  相似文献   

16.
The oxygen and carbon stable isotope compositions of cave speleothems provide a powerful method for understanding continental climate change. Here, we examine the question of the regionality of this isotopic record and its linkage with the marine isotopic record in the Eastern Mediterranean (EM) region. The study presents a new, accurately dated 250-kyr δ18O and δ13C record determined from speleothems of the Peqiin Cave, Northern Israel. Its comparison with the continuous 185-kyr isotopic record of the Soreq Cave speleothems from Central Israel reveals striking similarities. Thus, a strong regional climatic signal, brought about by variations in temperature and rainfall amount, is reflected in both cave records. Low δ18O minima in the Peqiin profile for the last 250- to 185-kyr period (interglacial marine isotopic stage 7) match the timing of sapropels 9 to 7 and are indicative of high rainfall in the EM region at these times. The combined Soreq and Peqiin δ18O record for the last 250 kyr excellently matches the published Globigerinoides ruber (G. ruber) marine δ18O record for the EM Sea, with the isotopic compositional difference ΔG.ruber-speleothems remaining relatively constant at −5.6 ± 0.7‰, thus establishing for the first time a robust, exploitable link between the land and the marine isotopic records. The correspondence of low δ18O speleothem values and high cave water stands with low G. ruber δ18O values during interglacial sapropel events indicates that these periods were characterized by enhanced rainfall in the EM land and sea regions. By use of sea surface temperatures derived from alkenone data as a proxy for land temperatures at the Soreq Cave, we calculate the paleorainfall δ18O values and its amounts. Maximum rainfall and lowest temperature conditions occurred at the beginning of the sapropel events and were followed by decrease in rainfall and increase in temperatures, leading to arid conditions. The record for the last 7000 yr shows a trend toward increasing aridity and agrees well with climatic and archeological data from North Africa and the Middle East.  相似文献   

17.
Multicellular animals first appeared on the earth during the Ediacaran period. However, the relationship between the abrupt biological evolution and environmental changes is still ambiguous. In order to examine seawater temperature and the carbon cycle through the Ediacaran, we analyzed the carbon and oxygen isotope compositions of carbonate rocks from drill cores from the Three Gorges area, South China. Importantly, the core samples include the Nantuo tillite, corresponding to the Marinoan glaciation, through the Doushantuo to the lower Dengying Fms. in ascending order.The δ13C profile displays five positive and five negative anomalies (PI-1 to 5 and NI-1 to 5), and the oxygen isotopes display very high absolute values around 0‰ with the highest at + 1.83‰. The combined δ18O and δ13C chemostratigraphies display both positive and negative correlations between the δ18O and δ13C values. The occurrence of the negative correlations supports the preservation of primary δ18O and δ13C values.The sample NI-4 has a negative correlation of the δ18O and δ13C excursions. The correlation supports a primary signature for both δ18O and δ13C variations. The positive δ18O excursion, accompanied by evidence of a eustatic sea-level fall, provides direct evidence for global cooling in the mid-Ediacaran; the 580 Ma Gaskiers Glaciation is a potential candidate for this global cooling event. The negative δ13C excursion was possibly caused by an increase in remineralization of dissolved organic carbon (DOC) due to enhanced continental weathering during the glaciation.Sample NI-5 is characterized by very low δ13C values, down to ? 10‰, corresponding to the Shuram-Wonoka-Pertatataka Excursion. The cause of the δ13C negative excursion is still not clear. However, a ubiquitous occurrence in excursions worldwide, and the lower δ13C values in deeper sections favor the enhancement of remineralization and respiration rather than secondary alteration, a restricted sea environment and lithification in coastal areas.  相似文献   

18.
Uranium-series dated stalagmites from Oman indicate that pluvial conditions prevailed from 6.3 to 10.5, 78 to 82, 120 to 130, 180 to 200 and 300 to 330 kyr B.P.; all of these periods coincide with peak interglacials. Oxygen (δ18O) and hydrogen (δD) isotope ratios of speleothem calcite and fluid inclusions reveal the source of moisture and provide information on the amount of precipitation, respectively. δ18O and δD values of stalagmites deposited during peak interglacials vary between ?8 and ?4 ‰ (VPDB) and ?53 and ?20‰ (Vienna Standard Mean Ocean Water [VSMOW]) respectively, whereas modern stalagmites range from ?2.6 to ?1.1‰ in δ18O (VPDB) and ?7.6 and ?3.3‰ in δD (VSMOW), respectively. The growth and isotopic records indicate that during peak interglacial periods, the limit of the monsoon rainfall was shifted far north of its present location and each pluvial period was coinciding with an interglacial stage of the marine oxygen isotope record.  相似文献   

19.
Chemical proxies are useful analogs for reconstructing physical properties of sea water, such as sea surface temperature (SST) and sea surface salinity (SSS). Time series of these inferred properties would allow for reconstructions of past El Niño–Southern Oscillation (ENSO) events, where no instrumental records exist. In this study, a monthly oxygen isotope record from a Porites coral is used to explain how past ENSO events are recorded in the coral skeletons. The sample covers a 12 year period and was collected from Nanwan Bay, Taiwan. During El Niño events the coral skeleton is shown to produce a δ18O–SST correlation with a slope of −0.12 ± 0.04‰ °C−1. During other times, this value is significantly different, with a slope of −0.21 ± 0.04‰ °C−1. Coral that grew during El Niño summers have δ18O values which are enriched by ∼0.2‰, relative to other times. A possible mechanism to explain this difference may be enhanced penetration of Kuroshio Current waters into the South China Sea during summer. The observed contrast in the correlation of δ18O–SST variability in this sample supports the influence of El Niño in eastern Asia.  相似文献   

20.
Several studies of the marine sedimentary record have documented the evolution of global climate during the Permo-Triassic mass extinction. By contrast, the continental records have been less exploited due to the scarcity of continuous sections from the latest Permian into the Early Triassic. The South African Karoo Basin exposes one of the most continuous geological successions of this time interval, thus offering the possibility to reconstruct climate variations in southern Laurasia from the Middle Permian to Middle Triassic interval. Both air temperature and humidity variations were estimated using stable oxygen (δ18Op) and carbon (δ13Cc) isotope compositions of vertebrate apatite. Significant fluctuations in both δ18Op and δ13Cc values mimic those of marine records and suggest that stable isotope compositions recorded in vertebrate apatite reflect global climate evolution. In terms of air temperature, oxygen isotopes show an abrupt increase of about + 8 °C toward the end of the Wuchiapingian. This occurred during a slight cooling trend from the Capitanian to the Permo-Triassic boundary (PTB). At the end of the Permian, an intense and fast warming of + 16 °C occurred and kept increasing during the Olenekian. These thermal fluctuations may be related to the Emeishan (South China) and Siberian volcanic paroxysms that took place at the end of the Capitanian and at the end of the Permian, respectively. Vertebrate apatite δ13Cc partly reflects the important fluctuations of the atmospheric δ13C values, the differences with marine curves being likely due to the evolution of local humidity. Both the oxygen and carbon isotope compositions indicate that the PTB was followed by a warm and arid phase that lasted 6 Ma before temperatures decreased, during the Late Anisian, toward that of the end-Permian. Environmental fluctuations occurring around the PTB that affected both continental and marine realms with similar magnitude likely originated from volcanism and methane release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号