首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Jan O. Backhaus   《Ocean Modelling》2008,22(3-4):114-127
This is the first part of a publication that describes the generation of adaptive grids (this part), and simulations with vector-ocean-model (VOM) in unstructured grids resulting from the adaptation (part II). A static vertical adaptive grid in z-coordinates allows improving the approximation of topography and vertical resolution at slopes. Adaptive grids use elements from a set of grid sizes by multiplying a basic smallest cell size with powers of two, as in cell division. Grids with locally isotropic vertical resolution at surface, seabed, and slopes can be generated whereby resolution decreases towards the ocean interior. The adaptation to topography yields unstructured grids that are organised in a one-dimensional vector by column-wise storage of cells, discarding land cells. The vector storage suggested the model’s name. Grids are generated by an iterative procedure that relies on rules, i.e. criteria and directives to control the grid structure in favour of a good representation of physics and smooth numerical operations. The directives govern vertical resolution at sea surface and seabed, and at slopes. For the latter vertical resolution is extended in the horizontal. In the ocean interior horizontal distances between changes in grid size can be controlled for the sake of smooth numerics. The use of a z-grid that avoids transformation errors, the depth-independence of vertical resolution, and the lateral extension of vertical resolution at slopes towards the ocean interior are the most significant differences of adaptive grids in comparison to vertical coordinate transformations. Unstructured grids do not rely on a smoothing of topography and can be used within any of the horizontal Arakawa-grids. For the same topography directives allow creating various grids as demonstrated for a shelf-ocean topography. The number of cells per column in two unstructured grids generated for the North Atlantic may locally well exceed typical layer numbers in conventional model matrices. But the domain average is similar to layer numbers of today’s ocean models. Thus, with the same investment of cells per domain a higher resolution in slope regions can be achieved by unstructured grids as compared to conventional z-grids.  相似文献   

2.
水深是反映海底地形地貌的最基础要素,对缺失的水深点进行准确的插值能帮助有效地表达海底地形地貌起伏形态。针对海底地形变化复杂的区域,传统的反距离加权插值法存在只考虑样本水深点与待插值水深点之间的距离,而忽略了样本水深点之间的空间相关性的问题。本文提出了一种顾及特征水深点距离重分配的反距离加权插值算法。该算法首先对离散的水深点构建特征水深线,在特征水深线的基础上,提取特征水深线上的特征点作为特征水深点;然后在所有样本水深点到待插值水深点距离之和不变的约束下,提出距离重分配的量化指标;最后构造出一个顾及特征水深点距离重分配的IDW插值算法模型。实验结果表明,在海底地形变化复杂的区域,顾及特征水深点距离重分配的反距离加权插值算法与传统的IDW、自然邻域插值、样条函数插值算法等相比,能有效提高水深点的插值精准度。  相似文献   

3.
Two algorithms are presented for mapping ocean properties in regions of complex topography. These algorithms greatly reduce the distortion introduced into mapped fields by interpolation methods that use isotropic correlation functions in regions of non-uniform geomorphology. They were developed for inclusion in a new high-resolution seasonal atlas of temperature, salinity, oxygen, nitrate, phosphate and silicate covering the major seas around Australia, New Zealand, Papua New Guinea and Indonesia (100–180°E, 50°S–10°N). Our schemes adjust the weighting of data-points to allow for bottom topography (topographic adjusted relief, TAR) and land barriers (barrier adjusted relief, BAR). The inclusion of these schemes in the mapping process allows the bathymetry to influence the mapped fields in a natural way, reduces leakage of structure between deep and shallow regions and produces far more realistic coastal gradients (it reduces the tendency to smear properties uniformly). In this study, the schemes are applied to a locally weighted least-squares filter, which involves projecting the data onto quadratic spatial functions. However, the approach should be applicable to other popular mapping techniques such as optimal interpolation. Examples are presented that demonstrate the improvements gained in mapping ocean properties in regions of complicated topography.  相似文献   

4.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.

The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.

Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.  相似文献   

5.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.

The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.

Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.  相似文献   

6.
刘达  黄本胜  邱静  谭超 《海洋工程》2016,34(2):16-23
沿海防浪林能形成柔性的植物消浪体系,可以有效降低风暴潮灾害。由于防浪林消浪效果受波浪、近岸水深及植物等多重因素的影响,消浪机理较为复杂,以往的系统研究成果较少。本文以立面二维自由面紊流模型为工具,建立了基于植物冠层特征的多孔介质模型,精细地模拟了破碎波对植物带的冲击,并与物理模型试验结果进行了对比验证,计算分析了植物带宽度、植物密度、滩地水深等因素对消浪效果的影响。  相似文献   

7.
前人在讨论水深对内潮能通量影响的时候得出结论:有限深海洋中海面对内潮的反射使得正压潮向内潮的能量转化相比较无限深海的情况显著降低,对于选定的地形,在无限深海假定下得到的能通量是该地形上内潮能通量的上限。鉴于前人所研究的基本上都是平滑的地形,而实际的海洋地形总是比较粗糙的,本文探讨了粗糙地形上内潮能通量随水深的变化。选取了弦函数地形、随机白噪声地形、弦函数地形叠加在高斯地形之上、随机白噪声地形叠加在高斯地形之上和随机白噪声地形与弦函数地形同时叠加在高斯地形之上5种情况进行了研究,发现对于这5种情况,都存在海洋有限深时的能通量大于无限深假定时的能通量,这说明前人得出的"有限深海洋中海面对内潮的反射使得正压潮向内潮的能量转化相比较无限深海的情况显著降低"的结论对于粗糙地形并不适用。  相似文献   

8.
《Ocean Modelling》2004,6(3-4):245-263
Astronomical data reveals that approximately 3.5 terawatts (TW) of tidal energy is dissipated in the ocean. Tidal models and satellite altimetry suggest that 1 TW of this energy is converted from the barotropic to internal tides in the deep ocean, predominantly around regions of rough topography such as mid-ocean ridges. A global tidal model is used to compute turbulent energy levels associated with the dissipation of internal tides, and the diapycnal mixing supported by this energy flux is computed using a simple parameterization.The mixing parameterization has been incorporated into a coarse resolution numerical model of the global ocean. This parameterization offers an energetically consistent and practical means of improving the representation of ocean mixing processes in climate models. Novel features of this implementation are that the model explicitly accounts for the tidal energy source for mixing, and that the mixing evolves both spatially and temporally with the model state. At equilibrium, the globally averaged diffusivity profile ranges from 0.3 cm2 s−1 at thermocline depths to 7.7 cm2 s−1 in the abyss with a depth average of 0.9 cm2 s−1, in close agreement with inferences from global balances. Water properties are strongly influenced by the combination of weak mixing in the main thermocline and enhanced mixing in the deep ocean. Climatological comparisons show that the parameterized mixing scheme results in a substantial reduction of temperature/salinity bias relative to model solutions with either a uniform vertical diffusivity of 0.9 cm2 s−1 or a horizontally uniform bottom-intensified arctangent mixing profile. This suggests that spatially varying bottom intensified mixing is an essential component of the balances required for the maintenance of the ocean’s abyssal stratification.  相似文献   

9.
季民  任静  张立国  李婷  孙勇 《海洋学报》2021,43(5):135-144
临界点是海洋流场拓扑结构中的重要构成要素,基于临界点的特征提取对于揭示海洋流场拓扑特征、开展海洋流场拓扑分析具有重要意义。本文基于临界点理论和Sperner引理,综合改进后的双线性插值算法和Sperner完全标号法,对海洋流场数据进行了临界点特征提取。首先,在双线性插值算法中添加滑动窗口处理,筛选临界点的候选网格单元,并采用聚合思想通过降低网格分辨率解决了网格插值中的二义性问题,同时考虑了0值网格存在的9种情形,通过迭代聚合思想滑动筛选候选网格单元,解决了插值网格均为0的情况。其次,提出了基于Sperner完全标号的最小值法临界点提取规则,将速度向量模最小的网格中心作为临界点,解决了实际流场物理场景中非0值的临界点提取。对两次提取结果进行合并、去重等处理,可以得到较为全面的临界点提取与分类结果。最后,通过对多个海域、不同深度流场数据的实验结果分析,证明了综合后的临界点提取方法的有效性及可行性。  相似文献   

10.
Based on Bayesian network (BN) and information flow (IF), a new machine learning-based model named IFBN is put forward to interpolate missing time series of multiple ocean variables. An improved BN structural learning algorithm with IF is designed to mine causal relationships among ocean variables to build network structure. Nondirectional inference mechanism of BN is applied to achieve the synchronous interpolation of multiple missing time series. With the IFBN, all ocean variables are placed in a causal network visually, making full use of information about related variables to fill missing data. More importantly, the synchronous interpolation of multiple variables can avoid model retraining when interpolative objects change. Interpolation experiments show that IFBN has even better interpolation accuracy, effectiveness and stability than existing methods.  相似文献   

11.
Intercomparison of three South China Sea circulation models   总被引:2,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

12.
Many ship-borne geodetic surveys at sea, such as Global Navigation Satellite System (GNSS)-based sea surface height (SSH) observation, acoustic profiling of the bottom, and others, deal with a dynamic topography which undergoes several changes during the survey campaign (e.g., changes in tide, salinity and currents). Those changes affect the measurements and may causes for some variations in the results. There are several methods for tidal variations correction, being the most dominant phenomena, such as tidal zoning, tidal constituent interpolation or ocean tidal models. In this study, we have implemented the tidal constituent interpolation method for the Israeli coastline in order to assess its quality and determine whether it is suitable for use in this particular region. This paper depicts the interpolation method, discusses some difficulties in the implementation for the Israeli coast and presents results from exemplary processing. In addition, we compare the results to those obtained using global and regional tidal models.  相似文献   

13.
Generalization is a comprehensive process. It is not simply a question of an algorithm, such as simplification, selection, displacement, and so on. Only after geometric shapes and topological properties have been understood fully, can a sound and automated generalization process be possible. This article proposes a new theoretical model for sounding generalization in digital nautical charts. First, with the aid of Delaunay triangulation, a tree structure is introduced for a hierarchical representation of the marine topography. Then, an analytical algorithm for the recognition and the measurement of the marine topography is developed through the use of the tree structure. Finally, all of the techniques mentioned above are integrated into a model for sounding generalization, of which results are illustrated with the aid of several examples.  相似文献   

14.
《Ocean Modelling》2008,20(3-4):138-160
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   

15.
Generalization is a comprehensive process. It is not simply a question of an algorithm, such as simplification, selection, displacement, and so on. Only after geometric shapes and topological properties have been understood fully, can a sound and automated generalization process be possible. This article proposes a new theoretical model for sounding generalization in digital nautical charts. First, with the aid of Delaunay triangulation, a tree structure is introduced for a hierarchical representation of the marine topography. Then, an analytical algorithm for the recognition and the measurement of the marine topography is developed through the use of the tree structure. Finally, all of the techniques mentioned above are integrated into a model for sounding generalization, of which results are illustrated with the aid of several examples.

  相似文献   

16.
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   

17.
To address the limitations of current methods to control and adjust the accuracy of depth models and relatively low accuracy, a quantitative method to control and adjust the accuracy of adaptive grid depth modeling is proposed. First, uncertainties in source data and interpolated depths are estimated, and the representation uncertainty derived from finite and discrete points representing the continuous seafloor surface is analyzed. Second, mean vertical uncertainty in an arbitrary given area is calculated. Finally, interpolation of the depths at grid nodes from source data and the distribution framework of the grid nodes are optimized in each local area, and an adaptive grid depth model is created according to the expected accuracy. The experimental results demonstrate that (1) the proposed method can control and adjust the accuracy of the depth model in each local area such that the accuracy of the constructed model meets the requirements of the expected index as closely as possible and (2) the proposed method can improve the accuracy of the depth modeling by optimizing the interpolation and distribution of the grid nodes.  相似文献   

18.
在CAD中实现等高线自动内插的一种方法   总被引:1,自引:0,他引:1  
针对实际工作中内插等高线这一问题,分析了内插等高线算法的基本原理以及实际绘图时可能遇到的几种特殊情况,给出了用ObjectARX语言实现该算法的程序,提出了一些需要注意的问题。该算法及程序可以解决大部分地形图等高线的内插问题,在实际工作中具有较高的实用价值。  相似文献   

19.
20.
平潭近岸海域岸线曲折,周边岛礁众多,海底地形复杂,是福建省海难事故的高发区.本研究建立了平潭近岸海域海上目标物漂移轨迹的预测系统,该系统通过风场和流场的数值模型获取海面动力环境信息,采用拉格朗日算法实现对海上目标物漂移轨迹的预测追踪.其中海流模型采用ROMS(regional ocean modeling system)模型构建,模型水平方向上最高分辨率为100m,垂向上分为16层,并考虑干湿边界,以体现复杂海岸线和水深地形.通过验证分析,潮位、流速和流向的模拟平均绝对误差分别为0.20 m、0.12 m/s和26°.通过平潭近岸2个浮子实验,结果表明,浮子漂移过程中受潮流和局地地形的影响明显,对漂移模型在平潭近岸海域的适用性进行初步验证,浮子模拟轨迹与实际漂移过程基本吻合,模拟时段内最大偏差距离为2.8km,系统可以为平潭近岸海域海上突发事故应急决策提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号