首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
测绘学   2篇
地球物理   1篇
海洋学   4篇
自然地理   1篇
  2014年   2篇
  2013年   2篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Many ship-borne geodetic surveys at sea, such as Global Navigation Satellite System (GNSS)-based sea surface height (SSH) observation, acoustic profiling of the bottom, and others, deal with a dynamic topography which undergoes several changes during the survey campaign (e.g., changes in tide, salinity and currents). Those changes affect the measurements and may causes for some variations in the results. There are several methods for tidal variations correction, being the most dominant phenomena, such as tidal zoning, tidal constituent interpolation or ocean tidal models. In this study, we have implemented the tidal constituent interpolation method for the Israeli coastline in order to assess its quality and determine whether it is suitable for use in this particular region. This paper depicts the interpolation method, discusses some difficulties in the implementation for the Israeli coast and presents results from exemplary processing. In addition, we compare the results to those obtained using global and regional tidal models.  相似文献   
2.
The coast at Caesarea, Israel, has been inhabited almost continuously for the last 2,400 years, and the archeological sites are today a major international tourist attraction. Because the sites straddle the shoreline, they are subject to constant damage by wave action, and must therefore be frequently restored. In this paper, local shoreline migrations over the last 200 years are investigated with the aim of distinguishing between natural and man-made coastal changes. In order to assess these changes accurately, geomorphological and sedimentological data were examined based on detailed beach profile measurements, bathymetric surveys, and grain-size analyses. In addition, series of old aerial photographs, as well as historical topographic maps and nautical charts were consulted. The results show that shoreline changes can be grouped into two main time periods. During the first period from 1862 to 1949 before the expansion of modern settlements, the position of the shoreline changed irregularly by up to 30 m. In the second period from 1949 onward, numerous coastal structures have been erected, and various coastal modifications have been carried out. The evaluation of the data suggests that human interventions have had relatively little effect on the overall position of the shoreline, as displacements ranged only from 5 to 18 m. Thus, coastal changes at Caesarea are predominantly due to natural wave action reflected in the heterogeneous geomorphological and sedimentological characteristics of the shore. This contradicts the common assumption that human activities are always mainly responsible for large-scale shoreline modifications in the region. It is concluded that, in order to implement meaningful mitigating countermeasures, coastal archeological sites need to be individually assessed with respect to the dominant factors causing local coastal change.  相似文献   
3.
The Nuclear Magnetic Resonance (NMR) method is the only physical tool currently available which is able to detect directly the presence of fresh water in the subsurface. The Time Domain Electromagnetic (TDEM) method, in turn, has been proven highly efficient in detecting saline groundwater. The combined application of these two methods is the most promising way to delineate accurately groundwater-bearing aquifers and to evaluate the quality of the water. This idea was tested during the feasibility study carried out under different hydrogeological conditions throughout Israel during August–September 1992. The Russian Hydroscope and Geonics PROTEM-IV instruments were used for the NMR and TDEM measurements, respectively.A total of 36 NMR and 12 TDEM stations was established, mostly in close proximity to existing observation wells. Among these only 19 NMR measurements showed reasonable signal-to-noise characteristics, while the rest were obviously distorted by ambient noise. The number of distorted measurements could have been even greater had they been carried out at all points planned. However, a significant number of the NMR stations were cancelled due to their proximity (less than 1–1.5 km) to electric power lines. As a result almost the entire Mediterranean coast of Israel, which was originally chosen as the main test site for this survey, turned out to be unsuitable owing to the low ambient noise protection of the Hydroscope. Another serious limitation of NMR measurements is the maximum penetration depth. The deepest information obtained during the feasibility study was from a depth of 74 m.Nevertheless, within the framework of its applicability, the NMR measurements proved to be sufficiently accurate and to have a high resolving capability. A comparison with the borehole data shows that, in most cases, NMR is able not only to detect the presence of water, but also to delineate different subaquifers. At the same time, however, the transmissivity and aquifer texture are much less reliably detected. The combined application of the NMR and TDEM methods may essentially improve the reliability of the interpretation. In all cases where the NMR anomaly fits the drop in TDEM resistivity, water of a different salinity is found at approximately the same depth. A reasonable correlation between the interpreted resistivities and water salinities is obtained for these horizons. However, if only one method indicates the presence of water, this, in many cases, was not confirmed by the borehole data. The TDEM anomalies were obviously caused by low-resistivity lithologies, while some of the false NMR signals could be explained by a low signal-to-noise ratio.As regards the freshwater/seawater interface, this was, in all cases, accurately detected by the TDEM measurements alone. It is interesting to note that at the same depth, NMR measurements indicated a drastically increasing anomaly followed by the absence of water at greater depths. The latter can most likely be explained by the very low resistivity of the sea water, which is not taken into account by the existing NMR interpretation.  相似文献   
4.
GPS vector configuration design for monitoring deformation networks   总被引:1,自引:0,他引:1  
 The performance of geodetic monitoring networks is heavily influenced by the configuration of the measured GPS vectors. As an effective design of the GPS measurements will decrease GPS campaign costs and increase the accuracy and reliability of the entire network, the identification of the preferred GPS vectors for measurement has been highlighted as a core problem in the process of deformation monitoring. An algorithm based on a sensitivity analysis of the network, as dependent upon a postulated velocity field, is suggested for the selection of the optimal GPS vectors. Relevant mathematical and statistical concepts are presented as the basis for an improved method of vector configuration design. A sensitivity analysis of the geodetic geodynamic network in the north of Israel is presented, where the method is examined against two deformation models, the Simple Transform Fault and the Locked Fault. The proposed method is suggested as a means for the improvement of the design of monitoring networks, a common practice worldwide. Received: 30 July 2001 / Accepted: 3 June 2002 Acknowledgments. It is my pleasant duty to thank the Survey of Israel and Dr. E. Ostrovsky for providing the variance–covariance matrix of the G1 network in northern Israel. I would like to thank the reviewers of this paper for their constructive and helpful remarks.  相似文献   
5.
Graph Theory Applications to GPS Networks   总被引:1,自引:0,他引:1  
This paper aims at presenting a new perspective of GPS networks, based on principles from graph theory, which are used to describe some connectivity properties of GPS networks. This is possible using a directed, connected graph and an incidence matrix. As the incidence matrix maintains information about the GPS graphy, the fundamental set of independent loops in the GPS network can be read from the incidence matrix. A spanning tree serves as a primary tool in locating the independent loops. According to the loop law the coordinate differences around loops sum up to zero. The measured vectors contain random and gross errors. Hence, if the entire independent loops sums are less than a certain threshold in three components, we can guarantee that there are no gross errors in the observations. The fundamental set of independent loops, based on different spanning trees, is used to detect gross errors in the observations without using adjustment computation. We use a small, simulated network containing gross errors to demonstrate the proposed algorithm. ? 2001 John Wiley & Sons, Inc.  相似文献   
6.
This paper attempts to assess the use of Global Navigation Satellite System (GNSS) as an accurate, reliable, and easy tool for sea level measurement. The GNSS technique was incorporated into a float based tide gauge system. A prototype of such an instrument was developed based on principles of conventional tide gauges, where high frequency noise is reduced mechanically. The ability of the GNSS based tide gauge (GTG) to monitor sea levels was tested in several experiments. The performance of the GTG was compared to that of a traditional tide gauge. The method of data analysis and data comparison between the GPS measurements and the tide gauge data is presented. The results show that the GTG is equal in performance to the traditional float operated tide gauge. It seems that the GTG is capable of delivering the same level of accuracy (1 cm), and its results are as reliable as its competitor, the traditional float tide gauge. The suggested instrument can be easily integrated into the array of permanent GNSS stations and assist in absolute measurements of sea level changes, caused by global warming and the greenhouse effect, for example.  相似文献   
7.
This paper attempts to assess the use of Global Navigation Satellite System (GNSS) as an accurate, reliable, and easy tool for sea level measurement. The GNSS technique was incorporated into a float based tide gauge system. A prototype of such an instrument was developed based on principles of conventional tide gauges, where high frequency noise is reduced mechanically. The ability of the GNSS based tide gauge (GTG) to monitor sea levels was tested in several experiments. The performance of the GTG was compared to that of a traditional tide gauge. The method of data analysis and data comparison between the GPS measurements and the tide gauge data is presented. The results show that the GTG is equal in performance to the traditional float operated tide gauge. It seems that the GTG is capable of delivering the same level of accuracy (1 cm), and its results are as reliable as its competitor, the traditional float tide gauge. The suggested instrument can be easily integrated into the array of permanent GNSS stations and assist in absolute measurements of sea level changes, caused by global warming and the greenhouse effect, for example.  相似文献   
8.
Monitoring for species occupancy is often carried out at local scales, reflecting specific targets, available logistics, and funding. Problematically, conservation planning and management operate at broader scales and use information inventories with good scale coverage. Translating information between local and landscape scales is commonly treated in an ad hoc manner, but conservation decision-making can benefit from quantifying spatial-knowledge relationships. Fauna occupancy monitoring, in particular, suffers from this issue of scale, as there are many different survey methods employed for different purposes. Rather than ignoring how informative these methods are when predicting regional distributions, we describe a statistical approach that identifies survey combinations that provide the greatest additive value in mammal detection across different scales. We identified minimal sets of survey methods for 53 terrestrial mammal species across a large area in Australia (New South Wales (NSW), 800,000 km2) and for each of the 18 bioregions it encompasses. Utility of survey methods varied considerably at a landscape scale. Unplanned opportunistic sightings were the single largest source of species information (35%). The utility of other survey methods varied spatially; some were retained in minimal sets for many bioregions, while others were spatially restricted or unimportant. Predator scats, Elliot and pitfall trapping, spotlighting, and diurnal herpetofauna surveys were the most frequently included survey methods at a landscape scale. Use of our approach can guide identification of efficient combinations of survey methods, maximising detection and returns for monitoring. Findings and methodologies are easily transferable and are globally applicable across any taxa. They provide guidelines for managing scarce resources for regional ?monitoring programs, and improving regional strategic ?conservation planning.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号