首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
西藏沙丁、荣布地区三叠系—老第三系沉积地质特征   总被引:1,自引:1,他引:0  
研究区从三叠纪到老第三纪,发育的岩石地层主要有确哈拉群(T3)、希湖群(J1-2)、拉贡塘组(J2-3)、多尼组(K1)、竟柱山组(K2)和牛堡组(E2-3)。在沉积相上,经历了从深水沉积到浅水直至陆相沉积的演变,发育有冲积扇、河流、湖泊、三角洲(潮汐)、障壁海岸、浅海、深海和火山碎屑流沉积。古地理分析表明,研究区晚三叠世古地理轮廓是一个从东南向西北和东北方向由浅水碳酸盐台地及深水陆层海底扇沉积共同发育的沉积盆地;早中侏罗世,演变成为一个由深水砂质浊积岩和细屑浊积岩组成的水下席状体沉积;进入中晚侏罗世,其古地理表现为一个陆屑浅海有障壁海岸;到了晚白垩世,研究区表现为以含煤沉积为特征的三角洲相沉积。  相似文献   

2.
This paper is a contribution to the knowledge of the sedimentation of Neoproterozoic sequences, known as the Jequitaı́ Formation and Macaúbas Group. These sequences are present along the transitional zone between the São Francisco Craton and the Brasiliano (≌600 Ma) Araçuaı́ fold belt in Minas Gerais, Brazil. A sedimentological study of these Neoproterozoic sequences enables us to distinguish between true continental and marine glacial facies and glacial material reworked by various subaqueous gravitational processes. The cratonic Jequitaı́ Formation consists of massive and stratified diamictites up to 100 m thick. This diamictite association is tentatively interpreted as glaciomarine in origin. It continues eastward, in the Araçuaı́ fold belt, as the metasedimentary Macaúbas Group, which is composed of metadiamictites, quartzites and schists from 5–12(?)km thick. The Macaúbas Group consists of resedimented glacial material deposited by subaqueous debris flows and turbidity currents. A depositional model is proposed for the Jequitaı́–Macaúbas glacial/gravitational sequence. From west to east, a glaciomarine sequence, possibly deposited from an ice-sheet and slightly reworked by gravitational processes, was reworked along the São Francisco cratonic border and generated a slope apron system made up of diamictites associated with turbidites and rhythmites.  相似文献   

3.
林畅松  杨起 《现代地质》1991,5(3):252-262,T001
位于鄂尔多斯西缘的贺兰构造带为一中元古代一古生代的奥拉槽。在区内的中寒武和中奥陶统中识别了一套巨厚的深水重力流沉积,其中包括下斜坡滑塌泥石流复合体、浊积扇以及碳酸盐岩斜坡扇裙等沉积类型。主要的相单元包括充填沟道或进入扇面形成的泥石流钙质角砾岩和砾岩、充填辫状水道的多层叠置的砂岩和砂砾岩、上叠扇的砂、泥岩互层以及浊积砂屑或含砾砂屑灰岩等。在中奥陶世该奥拉槽发展成一深水一半深水海槽,沿盆地西侧发育有浊积扇,而东侧仅有碳酸盐岩滑塌扇裙。它们可能是沿深水盆地两侧深大断裂产生的陡坡或水下断崖分布的,代表了早古生代贺兰奥拉槽在强烈沉陷期特定的深水盆地充填。  相似文献   

4.
The Kamoa sub‐basin, in the south‐eastern part of the Democratic Republic of Congo, is a rift basin that hosts a world‐class stratiform copper deposit at the base of a very thick (1·8 km) succession of matrix‐supported conglomerates (diamictite) (Grand Conglomérat Formation) that has been interpreted by some as the product of deposition in the aftermath of a planet‐wide glaciation. Newly available subsurface data consisting of more than 300 km of drill core throws new light on the origin of diamictite and associated facies types, and their tectonic, basinal and palaeoclimatic setting. Initiation of rifting is recorded by a lowermost subaqueous succession of fault‐related mass flow conglomerates and breccias (the ‘Poudingue’) with interdigitating coeval and succeeding sandstone turbidites (Mwashya Subgroup). Overlying diamictites of the Grand Conglomérat were deposited as subaqueous debrites produced by mixing and homogenization of antecedent breccias and gravel from the Poudingue and Mwashya sediments with basinal muds. Failure of over‐steepened basin margins and debris flow was likely to be triggered by faulting and seismic activity, and was accompanied by syn‐depositional subaqueous basaltic magmatism recorded by peperites and pillow lavas within diamictites. The thickness of diamictites reflects recurring phases of faulting, volcanism and rapid subsidence allowing continued accommodation of rapidly deposited resedimented facies well below wave base. A distal or indirect, glacial influence in the form of rare dropstones and striated clasts is evident, but tectonically‐driven mass flow destroyed any primary record of glacial climate originally present in basin margin sediments. Such basin margin settings were common during Rodinia rifting and their stratigraphy and facies record a dominant tectonic, rather than climatic, control on sedimentation. Deposition occurred on tectonic timescales inconsistent with a Snowball Earth model for Neoproterozoic diamictites involving a direct glacial contribution to deposition.  相似文献   

5.
The Trooper Creek Formation is a mineralised submarine volcano‐sedimentary sequence in the Cambro‐Ordovician Seventy Mile Range Group, Queensland. Most of the Trooper Creek Formation accumulated in a below‐storm‐wave‐base setting. However, microbialites and fossiliferous quartz‐hematite ± magnetite lenses provide evidence for local shoaling to above fairweather wave‐base (typically 5–15 m). The microbialites comprise biogenic (oncolites, stromatolites) and volcanogenic (pumice, shards, crystal fragments) components. Microstructural elements of the bioherms and biostromes include upwardly branching stromatolites, which suggest that photosynthetic microorganisms were important in constructing the microbialites. Because the microbialites are restricted to a thin stratigraphic interval in the Trooper Creek area, shallow‐water environments are interpreted to have been spatially and temporarily restricted. The circumstances that led to local shoaling are recorded by the enclosing volcanic and sedimentary lithofacies. The microbialites are hosted by felsic syneruptive pumiceous turbidites and water‐settled fall deposits generated by explosive eruptions. The microbialite host rocks overlie a thick association (≤?300 m) of andesitic lithofacies that includes four main facies: coherent andesite and associated autoclastic breccia and peperite; graded andesitic scoria breccia (scoriaceous sediment gravity‐flow deposits); fluidal clast‐rich andesitic breccia (water‐settled fall and sediment gravity‐flow deposits); and cross‐stratified andesitic sandstone and breccia (traction‐current deposits). The latter three facies consist of poorly vesicular blocky fragments, scoriaceous clasts (10–90%), and up to 10% fluidally shaped clasts. The fluidal clasts are interpreted as volcanic bombs. Clast shapes and textures in the andesitic volcaniclastic facies association imply that fragmentation occurred through a combination of fire fountaining and Strombolian activity, and a large proportion of the pyroclasts disintegrated due to quenching and impacts. Rapid syneruptive, near‐vent aggradation of bombs, scoria, and quench‐fragmented clasts probably led to temporary shoaling, so that subsequent felsic volcaniclastic facies and microbialites were deposited in shallow water. When subsidence outpaced aggradation, the depositional setting at Trooper Creek returned to being relatively deep marine.  相似文献   

6.
The Pliocene to possibly Pleistocene uppermost Orubadi and Era Formations, southwest margin of the Papuan Peninsula, are interpreted as having been deposited in alluvial-fan, fan-delta and shallow-marine environments. The alluvial-fan facies consists primarily of lenticular, coarse-grained conglomerate (up to 2 m boulders) and cross-bedded and horizontally laminated sandstone. Conglomerate and sandstone were deposited in shallow fluvial channels and by overbank sheetfloods. The facies also contains thick mudflow diamictite and minor tuff and terrestrial mudstone. The shallow-marine and fan-delta facies, in contrast, consists of heterogeneously interbedded marine and terrestrial mudstone, sandstone, diamictite, conglomerate and limestone. Marine mudstone is calcareous, sandy, bioturbated, and contains marine shells. Limestone is mostly packstone that has a varied, open-marine fauna. Rare coral boundstone is also present. Marine sandstone is burrowed to bioturbated and is hummocky cross-stratified in places. Some marine mudstone contains sandstone pillows formed by loading of unconsolidated sand by storm waves. Other sandstone in the fan-delta facies is cross-bedded, lacks shells and was probably deposited by fluvial processes. Several conglomerate beds in the fan-delta facies are well sorted and imbricated and were also deposited by stream floods. The synorogenic Orubadi and Era Formations were deposited in a foreland basin formed from loading of the Papuan–Aure Fold and Thrust Belt on the edge of the Australian craton. Deformation in the fold and thrust belt was probably related to docking and compression of the Finisterre Terrane–Bismarck Arc against the New Guinea Orogen. The Era Formation interfingers with the reefal Wedge Hill Limestone in which reef facies likely grew on a deforming anticline. Era Formation siliciclastics were sourced from volcanic, metamorphic and sedimentary rocks that were uplifted in the orogen to the northeast. Volcanic sediment was derived mostly from a then-active volcanic arc likely related to southward subduction at the Trobriand Trough.  相似文献   

7.
The middle to late Oligocene Polonez Cove Formation, exposed on south‐eastern King George Island, South Shetland Islands, provides rare evidence of mid‐Cenozoic West Antarctic cryosphere evolution. A revised lithostratigraphy and facies analysis and a review of the palaeoenvironmental significance of the formation are presented here. The diamictite‐dominated basal member of the formation (Krakowiak Glacier Member) records the presence and retreat of marine‐based ice on a shallow continental shelf. Five overlying members are recognized. These consist of basaltic‐sourced sedimentary rocks and lavas and represent a variety of shoreface and shallow continental shelf environments in an active volcanic setting. These units contain diverse reworked and ice‐rafted exotic clasts that become sparse towards the top of the formation, suggesting a continuing but waning glacial influence. New 40Ar/39Ar dates from interbedded lava flows indicate a late Oligocene age (25·6–27·2 Ma) for the Polonez Cove Formation, but are slightly younger than skeletal carbonate Sr‐isotope ages obtained previously (28·5–29·8 Ma). There is evidence for wet‐based subice conditions at the base of the Polonez Cove Formation, but no sedimentary facies to suggest substantial meltwater. This may reflect a subpolar setting or may result from lack of preservation or a high‐energy depositional environment. A northern Antarctic Peninsula/South Shetland Islands provenance is probable for most non‐basaltic clasts, but certain lithologies with possible origins in the Transantarctic and Ellsworth Mountains also occur sparsely throughout the formation. There is evidence to suggest that the presence of such far‐travelled clasts within subglacially deposited facies at the base of the formation reflects the advance of a local ice cap across marine sediments containing the clasts as ice‐rafted material. The presence of these clasts suggests that extensive marine‐based ice drained into the southern Weddell Sea region and that a strong Weddell Sea surface current operated both before and during deposition of the Polonez Cove Formation.  相似文献   

8.
ABSTRACT The Upper Carboniferous deep‐water rocks of the Shannon Group were deposited in the extensional Shannon Basin of County Clare in western Ireland and are superbly exposed in sea cliffs along the Shannon estuary. Carboniferous limestone floors the basin, and the basin‐fill succession begins with the deep‐water Clare Shales. These shales are overlain by various turbidite facies of the Ross Formation (460 m thick). The type of turbidite system, scale of turbidite sandstone bodies and the overall character of the stratigraphic succession make the Ross Formation well suited as an analogue for sand‐rich turbidite plays in passive margin basins around the world. The lower 170 m of the Ross Formation contains tabular turbidites with no channels, with an overall tendency to become sandier upwards, although there are no small‐scale thickening‐ or thinning‐upward successions. The upper 290 m of the Ross Formation consists of turbidites, commonly arranged in thickening‐upward packages, and amalgamated turbidites that form channel fills that are individually up to 10 m thick. A few of the upper Ross channels have an initial lateral accretion phase with interbedded sandstone and mudstone deposits and a subsequent vertical aggradation phase with thick‐bedded amalgamated turbidites. This paper proposes that, as the channels filled, more and more turbidites spilled further and further overbank. Superb outcrops show that thickening‐upward packages developed when channels initially spilled muds and thin‐bedded turbidites up to 1 km overbank, followed by thick‐bedded amalgamated turbidites that spilled close to the channel margins. The palaeocurrent directions associated with the amalgamated channel fills suggest a low channel sinuosity. Stacks of channels and spillover packages 25–40 m thick may show significant palaeocurrent variability at the same stratigraphic interval but at different locations. This suggests that individual channels and spillover packages were stacked into channel‐spillover belts, and that the belts also followed a sinuous pattern. Reservoir elements of the Ross system include tabular turbidites, channel‐fill deposits, thickening‐upward packages that formed as spillover lobes and, on a larger scale, sinuous channel belts 2·5–5 km wide. The edges of the belts can be roughly defined where well‐packaged spillover deposits pass laterally into muddier, poorly packaged tabular turbidites. The low‐sinuosity channel belts are interpreted to pass downstream into unchannellized tabular turbidites, equivalent to lower Ross Formation facies.  相似文献   

9.
广西来宾-合山一带晚二叠世海底扇浊积岩相   总被引:11,自引:6,他引:5       下载免费PDF全文
广西来宾蓬莱滩及合山马滩两地的晚二叠世地层中发育有典型的重力流沉积构造,如粒序层理、包卷层理、槽模、重荷模、碟状构造和滑塌褶皱等。通过对蓬莱滩合山组和大隆组以及马滩剖面的大隆组岩相特征的详细研究,提出来宾蓬莱滩晚二叠世合山组和大隆组以及合山马滩晚二叠世大隆组形成于海底扇环境,划分出具碟状构造的块状砂岩(B1)、块状砂岩(B2)、近基浊积岩(C)、远基浊积岩(D)、不规则互层的砂泥岩(E)、滑塌褶皱层(F)及含浮游生物化石的页岩、硅质岩(G)等岩相类型,同时归纳出外扇相组合、中扇舌状体相组合、中扇水道相组合、斜坡相组合及深切谷水道相组合等,还对这些海底扇浊积岩系的古地理意义做了讨论。桂中碳酸盐岩台地相区和云开古陆之间在晚二叠世为一发育海底扇浊积岩的深水盆地,其中来宾-合山一带在大隆组沉积期处于水深约300~1 000 m的深水盆地环境,合山一带火山活动提供的火山物质及来自东侧云开古陆的陆源物质构成该区浊积岩的主要物源。  相似文献   

10.
Syn-rift sediments in basins formed along the future southern continental margin of the Jurassic Tethys ocean, comprise, in the eastern Alps of Switzerland, up to 500 m thick carbonate turbidite sequences interbedded with bioturbated marls and limestones. In the fault-bounded troughs no submarine fans developed; in contrast, the fault scarps acted as a line source and the asymmetric geometry as well as the evolution of the basin determined the distribution of redeposited carbonates. The most abundant redeposits are bio- and lithoclastic grainstones and packstones, with sedimentary structures indicating a wide range of transport mechanisms from grain flow to high- and low-density turbidity currents. Huge chaotic megabreccias record catastrophic depositional events. Their main detrital components are Upper Triassic shallow-water carbonates and skeletal debris from nearby submarine highs. After an event of extensional tectonism, sedimentary prisms accumulated in the basins along the faults. Each prism is wedge-shaped with a horizontal upper boundary and consists of a thinning- and fining-upward megacycle. Within each megacycle six facies associations are distinguished. At the base of the fault scarp, an association of breccias was first deposited by submarine rockfall and rockfall avalanches. A narrow, approximately 4000 m wide depression along the fault was subsequently filled by the megabreccia association, in which huge megabreccias interfinger with thin-bedded turbidites and hemipelagic limestones. The thick-bedded turbidite association covered the megabreccias or formed, farther basinward, the base of the sedimentary column. Within the thick-bedded turbidites, thinning- and fining-upward cycles are common. The overlying thin-bedded turbidite association shows nearly no cyclicity and the monotonous sequence of fine-grained calciturbidites covers most of the basin area. With continuous filling and diminishing sediment supply, a basin-plain association developed comprising fine-grained and thin-bedded turbidites intercalated with bioturbated marls and limestones. On the gentle slopes opposite the fault escarpment, redeposited beds are scarce and marl/limestone alternations as well as weakly nodular limestones prevail.  相似文献   

11.
The Karoo Supergroup in Madagascar is subdivided into three lithostratigraphical units: the Late Carboniferous-Early Permian Sakoa Group; the Late Permian-Middle Triassic Sakamena Group; and the Triassic-Early Jurassic Isalo Group. The Sakamena Group is fairly well exposed in the southern Morondava Basin, where it is approximately 4000 m thick. The Sakamena Group is separated from the Sakoa Group by an angular unconformity. The Lower Sakamena Formation is characterised by two major facies associations: (1) interbedded muddy conglomerates and coarse sandstones; and (2) interbedded sandstones and mudstones, which were deposited in a rejuvenated rift setting by coarse-grained fluvial systems and debris flows on the rift margins. In the Vatambe area, facies represent fandelta deposition in a saline lake or tongue of the ocean. The Middle Sakamena Formation comprises three major facies: (1) laminated mudstones and sandstones; (2) sandstones; and (3) mudstones. The Middle Sakamena facies were deposited by low gradient meandering streams and in shallow lakes. The Upper Sakamena Formation was deposited in similar environments, except that it is comprised predominantly of red beds. The Isalo Group consists predominantly of coarse-grained sandstones (up to 6000 m thick). These sandstones were deposited by braided streams with the coarse detritus derived from a structural uplift in the east.  相似文献   

12.
西藏拉萨林周地区的下二叠统旁多群的地层层序以前并不十分清楚,其中“杂砾岩”的成因也争议很大。通过详细的野外地质调查和研究,在林周旁多地区新发现了其中部的含有坠石的纹层状粘土岩,并建立了旁多群中部和上部的地层序列。旁多群中部以陆源碎屑少、悬浮泥质为主的欠补偿深水盆地相沉积为特征,而上部以陆源碎屑丰富的滨、浅海相沉积为特征。旁多群自下而上反映了两期岩浆构造事件:第一期发生在该群中部沉积之初,伴随着基性玄武岩的喷发,该群中部沉积时,盆地进入裂谷鼎盛时期,随后进入以旁多群上部为代表的裂谷充填阶段;第二期构造事件可能发生在旁多群和乌鲁龙组沉积之交,乌鲁龙组沉积物中含有大量的长石碎屑、火山岩岩屑和凝灰质沉积岩,指示这期岩浆构造活动的存在。旁多群中的坠石沉积指示旁多群的形成背景是裂谷构造环境下的冰海相。旁多群中的杂砾岩按照成因可以划分为:具有正粒序结构的杂砾岩,为重力流沉积岩,反映侧向水流的搬运;不具有正粒序结构的厚层块状、含有坠石沉积的杂砾岩,为水下冰碛岩,反映冰川、冰筏作用存在,指示大陆上有冰川作用。这种分类和命名有助于石炭-二叠纪冰川发育过程和旋回性的研究,也有助于提高冰海相地层的划分和对比的可靠性和精度。  相似文献   

13.
梵净山群沉积地质特征与原型盆地分析   总被引:1,自引:0,他引:1  
梵净山群出露于江南造山带西北端,为一套浅变质火山、碎屑岩系,其上亚群主要由深海、半深海浊积岩系组成,自下而上划分为铜厂组、洼溪组和独岩塘组。铜厂组主体由浊积扇相和盆地相组成,洼溪组则主要由浊积扇扇中、扇根亚相组成。进一步的沉积相序研究揭示,自回香坪组至铜厂组、洼溪组,沉积环境总体呈一先海进、后海退的沉积旋回,显示裂陷扩张过程。铜厂组和洼溪组浊流成因的小型斜层理位态研究揭示,前积层优选方位指向北、北东,证实沉积物来自其南,向北扩散。浊积砂岩骨架颗粒统计结果表明,石英含量占23%~34%,且主要为单晶石英,而长石含量占14%~23%,岩屑含量占39%~50%,岩屑以火山岩屑为主。骨架颗粒统计图解揭示其物源为岩浆弧。基于上述,并结合回香坪组火山岩大地构造属性研究,提出并确定梵净山群上部碎屑岩系的原型盆地形成于弧后裂陷,板块构造环境为初始边缘海。  相似文献   

14.
东濮凹陷濮卫环洼带层序划分与沉积体系   总被引:6,自引:2,他引:4       下载免费PDF全文
根据地层基准面原理,通过对岩心、测井、录井资料的综合分析,将研究区Es3.3-Es3.2层段的地层划分出4个中期地层旋回(层序):MSC1,MSC2,MSC3,MSC4。其中大致发育2种类型的层序,即陆源碎屑岩层序和膏盐岩层序。陆源碎屑岩层序多形成于基准面上升期,以发育泥质岩夹浊积砂体、三角洲前缘砂质沉积为主;膏盐岩层序多形成于基准面下降期,以发育厚层的盐岩、膏盐岩、膏岩、泥膏岩、膏泥岩夹浊积席状砂为特征。识别出3种类型的沉积体系:较深水湖-浊积扇、较深水盐湖、浅湖-三角洲体系,并在层序格架内分析了各旋回的沉积体系构成和储层砂体的发育情况。综合分析生、储、盖条件后认为,在垂向上,MSC2上升半旋回为本区最有利的储集层段;在平面上,本区的油气勘探应主要寻找洼陷东、西两侧断层下降盘的浊积砂体,主要储层砂体类型为浊积水道及浊积席状砂。  相似文献   

15.
Eight continuous cores up to 150 m long and spaced an average of 200 m apart yield a detailed local insight into the composition and architecture of an ancient continental margin sequence, the Gowganda Formation (early Proterozoic: Huronian) near Elliot Lake, Ontario. Nearby outcrops of similar facies provide important supplementary data on sedimentary structures. Continental glaciers provided an abundant supply of coarse debris but, apart from rafting of debris by floating ice, played little or no part in Gowganda sedimentation. The basal 50 m of the Gowganda Formation in the drill-hole area represents a continental slope depositional system. It consists mainly of gravelly and sandy sediment gravity flow deposits, interbedded with minor rain-out units of diamictite, and argillite containing dropstones. Ten types of sediment gravity flow deposit are distinguished. An overlying submarine-channel depositional system, 10–50m thick, consists of hemipelagic argillites containing dropstones and showing deformation structures. These are interbedded with well-sorted channel-fill sandstones. Submarine point bars 4·5 m thick (identified in nearby outcrops) demonstrate a meandering channel geometry. This channel-fill sequence probably formed during a period of high sea-level and reduced sediment supply, but the relationship to ice advance-retreat cycles is unclear. The subsurface sequence is completed by a blanket of massive rain-out diamictites up to 55 m thick, and a younger slope sequence of sediment gravity flow diamictites and sandstones. The stratigraphy is quite different in outcrop section 10 km to the west of the drill-holes, suggesting the presence of major lateral facies changes and/or internal erosion surfaces within the Gowganda Formation. This complexity of stratigraphy and depositional processes is probably a feature of many ancient glacial units, and points to the advisability of not making climatic or tectonic interpretations from a few generalized or composite sections.  相似文献   

16.
Sedimentary rocks of the Lower Cretaceous in the Subbetic of the Alamedilla area (province of Granada) were studied. In this area, a significant amount of redeposited sediments within the Carretero Formation were recorded. Resedimented material is mainly composed of Jurassic oolitic limestones and volcanic rocks, as well as of Neocomian hemipelagic sedimentary rocks (marly limestones and marls). All these redeposited sediments corresponding to rock fall and debris flow originated as the result of significant slopes in a very sharp submarine topography. Volcanism and the resultant volcanic edifices created this sharp slopes making up in some cases guyots. The volcanism was mainly active in the Middle Jurassic, although it persisted locally until Late Jurassic and Early Cretaceous, and controlled the sedimentation in this area of the Subbetic basin during most of the Mesozoic. The proposed genetic model is in agreement with a base-of-slope apron model with two significant special features: (1) the provenance of the clasts mainly from Jurassic outcrops with oolites deposited in guyots and isolated marine platforms, and volcanic submarine rocks, and (2) the palaeobathymetry of the deposits, relatively shallow and sporadically affected by storm waves.  相似文献   

17.
《Sedimentary Geology》2006,183(1-2):99-124
The snowball Earth hypothesis suggests that the Neoproterozoic was characterized by several prolonged and severe global glaciations followed by very rapid climate change to ‘hot house’ conditions. The Neoproterozoic Port Askaig Formation of Scotland consists of a thick succession of diamictite, sandstone, conglomerate and mudstone. Sedimentological and stratigraphic analysis of Port Askaig deposits exposed on the Garvellach Islands was carried out to establish the nature of Neoproterozoic palaeoenvironmental change preserved in this thick succession. Particular emphasis was placed on identifying and distinguishing between climatic and tectonic controls on sedimentation.Port Askaig Formation diamictite units are attributed to deposition by sediment gravity flow processes or ‘rainout’ of fine-grained sediment and ice-rafted debris in a glacially influenced marine setting. Associated facies record various depositional processes ranging from sediment gravity flows (conglomerate, massive sandstone and laminated mudstone) to deposition under other unidirectional currents (cross-bedded and horizontally laminated sandstone). The Port Askaig Formation is also characterized by abundant soft sediment deformation features that occur at discrete intervals and are interpreted to record episodic seismic activity.Stratigraphic analysis of the Port Askaig Formation on the Garvellach Islands reveals three phases of deposition. Phase I was dominated by sediment gravity flow processes and sedimentation was primarily tectonically controlled. Phase II was a transitional phase characterized by continued tectonic-instability, an increased supply of sand to the basin and the preservation of current-generated facies. In the third and final phase of deposition, the interbedded units of sandstone and diamictite are interpreted to reflect development of large sandy bedforms and ice margin fluctuations in a tectonically stable marine setting.Sedimentological and stratigraphic analysis of the Port Askaig Formation demonstrates that tectonic activity had a significant influence on development of the lowermost parts of the succession. Climatic influences on sedimentation are difficult to identify during such phases of tectonic activity but are more easily discerned during episodes of tectonic quiescence (e.g.,, Phase III of the Port Askaig Formation). The thick succession of diamictite interbedded with current-deposited sandstone preserved within the Port Askaig Formation is not consistent with deep freeze conditions proposed by the snowball Earth hypothesis.  相似文献   

18.
ABSTRACT There is much debate regarding the intensity and geographic extent of glaciation during the Neoproterozoic, particularly in response to recent geochemical work suggesting that the Neoproterozoic earth was at times ice covered from equator to poles (the ‘Snowball Earth’ hypothesis). A detailed sedimentological analysis of the Neoproterozoic Smalfjord Formation of northern Norway was conducted in order to determine the extent and intensity of glacial influence on sedimentation. In the Tarmfjorden area, the Smalfjord Formation consists of a stacked succession of diamictites interbedded with fine‐grained laminated mudstones containing rare outsized clasts. Diamictites and interbedded mudstones are interpreted as the product of subaqueous mass flows generated along the basin margin. In the Varangerfjorden area, chaotically interbedded diamictites, conglomerates and sandstones are overlain by a thick succession of stacked sandstone beds; onediamictite unit at Bigganjargga overlies a striated pavement. The Varangerfjorden outcrops appear to record deposition on a subaqueous debris apron. Although diamictites contain rare striated and faceted clasts, suggesting a glacial sediment source, their origin as subaqueous mass flows prevents the interpretation of ice mass form or distribution. Rare lonestones may be associated with floating ice in the basin, which may be of glacial or seasonal origin. Glacial ice may have contributed poorly sorted glacial debris to the basin margin, either directly or through fluvioglacial systems, but there is no evidence of direct deposition by ice at Varangerfjorden or Tarmfjorden. The overall fining‐upward trend identified in the Smalfjord Formation and overlying Nyborg Formation is consistent with depositional models of rift basin settings. This fining‐upward trend, the predominance of mass flow facies including breccias associated with scarps and the evidence for extensional tectonic activity in the region suggest that tectonic activity may have played an important role in the development of this Neoproterozoic succession. The Smalfjord Formation at Tarmfjorden and Varangerfjorden does not exhibit sedimentological characteristics consistent with severe glacial conditions suggested by the snowball Earth hypothesis.  相似文献   

19.
Large isolated gravity flows (debrites) are widely present in the stratigraphic record of the northern Apennines foreland-basin system. These strata may be useful for provenance signals and dispersal pathways during foreland evolution. This paper examines a cohesive debris flow bed interbedded with turbidite strata of the Macigno Formation (Late Oligocene, Tuscany, Italy), in order to obtain new data on the provenance of the clastic material. Clasts in the debris flow are predominantly plutonic (granodiorite, tonalite, and S-granite) and subordinately metamorphic (gneiss and schist) and sedimentary calcareous clasts. The composition of the clasts within the debris flow is similar to the clastic composition of the interbedded turbidite sandstones of the "Macigno costiero." The depositional features of the debris flow suggest that it traveled for a short distance within the basin before it was deposited not far from the slope. The absence of a high-pressure/low-temperature (HP/LT) paragenesis in the plutonic and metamorphic clasts of the debris flow indicates a provenance from a crystalline basement not involved in the high-pressure phases of the Alpine Orogenesis. Previous studies have indicated the Central-Western Alps as potential source areas for the Macigno Formation sediments. The lack of HP/LT metamorphic signatures in our studied samples excludes the Pennidic and Austroalpine nappes of the Western Alps as possible sources for the debris flows of the "Macigno costiero." These new data (sedimentological, petrographical, and microstructural) suggest that the Corsica-Sardinia Hercynian basement, lacking a HP/LT paragenesis, is the more accredited source area of the debris flow and of the related turbidite sandstones of the "Macigno costiero" succession. These foredeep-feeding sediments were probably before deposited within an episutural basin developed close to the northern Apennines orogenic wedge.  相似文献   

20.

The Early Devonian Bindook Volcanic Complex consists of a thick silicic volcanic and associated sedimentary succession filling the extensional Wollondilly Basin in the northeastern Lachlan Fold Belt. The basal part of the succession (Tangerang Formation) is exposed in the central and southeastern Wollondilly Basin where it unconformably overlies Ordovician rocks or conformably overlies the Late Silurian to Early Devonian Bungonia Limestone. Six volcanic members, including three new members, are now recognised in the Tangerang Formation and three major facies have been delineated in the associated sedimentary sequence. The oldest part of the sequence near Windellama consists of a quartz turbidite facies deposited at moderate water depths together with the shallow‐marine shelf Windellama Limestone and Brooklyn Conglomerate Members deposited close to the eastern margin of the basin. Farther north the shelf facies consists of marine shale and sandstone which become progressively more tuffaceous northwards towards Marulan. The Devils Pulpit Member (new unit) is a shallow‐marine volcaniclastic unit marking the first major volcanic eruptions in the region. The overlying shallow‐marine sedimentary facies is tuffaceous in the north, contains a central Ordovician‐derived quartzose (?deltaic) facies and a predominantly mixed facies farther south. The initial volcanism occurred in an undefined area north of Marulan. A period of non‐marine exposure, erosion and later deposition of quartzose rocks marked a considerable break in volcanic activity. Volcanism recommenced with the widespread emplacement of the Kerillon Tuff Member (new unit), a thick, non‐welded rhyolitic ignimbrite followed by dacitic welded ignimbrite and air‐fall tuff produced by a large magnitude eruption leading to caldera collapse in the central part of the Bindook Volcanic Complex, together with an additional small eruptive centre near Lumley Park. The overlying Kerrawarra Dacite Member (new unit) is lava‐like in character but it also has the dimensions of an ignimbrite and covers a large part of the central Bindook Volcanic Complex. The Carne Dacite Member is interpreted as a series of subvolcanic intrusions including laccoliths, cryptodomes and sills. The Tangerang Formation is overlain by the extensive crystal‐rich Joaramin Ignimbrite (new unit) that was erupted from an undefined centre in the central or northern Bindook Volcanic Complex. The volcanic units at Wombeyan and the Kowmung Volcaniclastics in the northwestern part of the complex are probably lateral time‐equivalents of the Tangerang Formation and Joaramin Ignimbrite. All three successions pre‐date the major subaerial volcanic plateau‐forming eruptions represented by the Barrallier Ignimbrite (new unit). The latter post‐dated folding and an extensive erosional phase, and unconformably overlies many of the older units in the Bindook Volcanic Complex. This ignimbrite was probably erupted from a large caldera in the northern part of the complex and probably represents surface expressions of part of the intruding Marulan Batholith. The final volcanic episode is represented by the volcanic units at Yerranderie which formed around a crater at the northern end of the exposed Bindook Volcanic Complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号