首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Kamoa sub‐basin, in the south‐eastern part of the Democratic Republic of Congo, is a rift basin that hosts a world‐class stratiform copper deposit at the base of a very thick (1·8 km) succession of matrix‐supported conglomerates (diamictite) (Grand Conglomérat Formation) that has been interpreted by some as the product of deposition in the aftermath of a planet‐wide glaciation. Newly available subsurface data consisting of more than 300 km of drill core throws new light on the origin of diamictite and associated facies types, and their tectonic, basinal and palaeoclimatic setting. Initiation of rifting is recorded by a lowermost subaqueous succession of fault‐related mass flow conglomerates and breccias (the ‘Poudingue’) with interdigitating coeval and succeeding sandstone turbidites (Mwashya Subgroup). Overlying diamictites of the Grand Conglomérat were deposited as subaqueous debrites produced by mixing and homogenization of antecedent breccias and gravel from the Poudingue and Mwashya sediments with basinal muds. Failure of over‐steepened basin margins and debris flow was likely to be triggered by faulting and seismic activity, and was accompanied by syn‐depositional subaqueous basaltic magmatism recorded by peperites and pillow lavas within diamictites. The thickness of diamictites reflects recurring phases of faulting, volcanism and rapid subsidence allowing continued accommodation of rapidly deposited resedimented facies well below wave base. A distal or indirect, glacial influence in the form of rare dropstones and striated clasts is evident, but tectonically‐driven mass flow destroyed any primary record of glacial climate originally present in basin margin sediments. Such basin margin settings were common during Rodinia rifting and their stratigraphy and facies record a dominant tectonic, rather than climatic, control on sedimentation. Deposition occurred on tectonic timescales inconsistent with a Snowball Earth model for Neoproterozoic diamictites involving a direct glacial contribution to deposition.  相似文献   

2.
The Late Proterozoic Conception Group, exposed on the Avalon Peninsula in Newfoundland, Canada, is a 4 km thick turbidite succession containing a conformable 300 m thick sequence of diamictites (the Gaskiers Formation) near the base. Massive and crudely-stratified diamictites form beds up to 25 m thick which have a tabular geometry with slightly erosive basal contacts and are interbedded with mudstones and fine-grained, thin-bedded turbidites. These diamictites are interpreted as submarine debris flow deposits. Disrupted diamictites form strongly deformed units that contain large, complexly folded rafts of mudstone and turbidite facies. These diamictite units are interpreted as submarine slumps. Diamictites contain glacially-striated and faceted clasts; clasts and matrix are predominantly of volcanic provenance. One outcrop shows interbedded volcanic agglomerate and diamictite, and volcanic bombs can also be identified. The interbedding of diamictites with turbidites and the stratigraphic context provided by the thick sequences of turbidites below (Mall Bay Formation) and above (Drook Formation) indicate a deep marine slope setting of diamictite deposition. Diamictite facies record remobilization and downslope transfer of large volumes of unstable volcanic and glacial debris initially deposited in a shallower water marginal marine zone. The regional tectonic framework suggests the Conception Group accumulated in a deep, southward-opening ensialic rift basin with active but waning volcanic centres to the north. The Gaskiers Formation may be representative of other Late Precambrian glacially-influenced diamictite sequences that were deposited around the North Atlantic region and in Europe. These deep marine diamictite sequences characterized by debris flows, turbidites, and slump deposits, can be contrasted with more extensive shallow marine shelf diamictite sequences found in association with dolomites and tidally influenced shallow water facies in other basinal settings.  相似文献   

3.
Recent studies on Neoproterozoic climate change have prompted renewed interest in Neoproterozoic glacial deposits and renewed debate over the criteria used to identify the nature of glacial influence on sedimentation. Analyses of soft sediment deformation structures have provided important clues to distinguish between competing palaeoenvironmental interpretations of Quaternary glacial deposits; a similar approach is presented here in the analysis of Neoproterozoic glacial deposits of the Smalfjord Formation, northern Norway. A detailed sedimentological and structural analysis at several sites in the Varangerfjorden area reveals complex soft sediment deformation at various scales in conglomerate, sandstone and diamictite. Deformation is predominantly ductile and includes anticlinal and synclinal folding, flow noses, flame structures, recumbent folding and shear structures. The deformed sediments are associated predominantly with conglomerate and sandstone, which record glaciofluvial and deltaic depositional conditions. Some deformations can be attributed to rapid deposition and slumping, whereas others appear to record shear stress associated with overriding ice. The scale, style and range of deformation, together with the coarse-grained nature of the deformed sediments and facies associations, suggest that these were unfrozen outwash sediments that were overridden by ice and resedimented in a dynamic ice-proximal setting. Whereas recent studies of diamictite-bearing strata of the Smalfjord Formation had revealed no clear evidence of glacial influence on deposition, deformation structures documented here suggest that glacial conditions prevailed on the basin margin during deposition of Smalfjord Formation sediments, with sedimentary facies and deformation structures typical of temperate ice-proximal settings.  相似文献   

4.
The snowball Earth hypothesis describes episodes of Neoproterozoic global glaciations, when ice sheets reached sea‐level, the ocean froze to great depth and biota were decimated, accompanied by a complete shutdown of the hydrological cycle. Recent studies of sedimentary successions and Earth systems modelling, however, have brought the hypothesis under considerable debate. The Squantum ‘Tillite’ (Boston Basin, USA), is one of the best constrained snowball Earth successions with respect to age and palaeogeography, and it is suitable to test the hypothesis for the Gaskiers glaciation. The approach used here was to assess the palaeoenvironmental conditions at the type locality of the Squantum Member through an analysis of sedimentary facies and weathering regime (chemical index of alteration). The stratigraphic succession with a total thickness of ca 330 m documents both glacial and non‐glacial depositional environments with a cool‐temperate glacial to temperate non‐glacial climate weathering regime. The base of the succession is composed of thin diamictites and mudstones that carry evidence of sedimentation from floating glacial ice, interbedded with inner shelf sandstones and mudstones. Thicker diamictites interbedded with thin sandstones mark the onset of gravity flow activity, followed by graded sandstones documenting channellized mass gravity flow events. An upward decrease in terrigenous supply is evident, culminating in deep‐water mudstones with a non‐glacial chemical weathering signal. Renewed terrigenous supply and iceberg sedimentation is evident at the top of the succession, beyond which exposure is lost. The glacially influenced sedimentary facies at Squantum Head are more consistent with meltwater dominated alpine glaciation or small local ice caps. The chemical index of alteration values of 61 to 75 for the non‐volcanic rocks requires significant exposure of land surfaces to allow chemical weathering. Therefore, extreme snowball Earth conditions with a complete shutdown of the hydrological cycle do not seem to apply to the Gaskiers glaciation.  相似文献   

5.
《Gondwana Research》2003,6(1):65-77
A sedimentary succession included in the lower section of the Playa Hermosa Formation from the Playa Verde Basin, Uruguay, is described. Two facies associations, one mainly coarse- to medium-grained and other one fine-grained, have been defined (FA I-II). In the first one, breccias, conglomerates, sandstones and minor mudstones were deposited in a subaqueous depositional setting (proximal) suggesting slope instability and resedimentation processes. The second one contains diamictites, rhythmites, sandstones and mudstones and presents abundant evidence of soft-deformation, also interpreted to be deposited in a subaqueous environment (distal). Dropstones, clast layers, diamictites, rhythmites and varve-like deposits are interpreted as ice rafting processes generated during a glacial episode. This glacial-related succession constitutes the first record from the Varanger glaciation at the Río de la Plata Craton of the late Neoproterozoic age and also represents one of the oldest sedimentary records after the collision of the Río de la Plata and Kalahari Cratons. A combined interaction of extensional faulting and glaciation in a tectonically active basin with locally high subsidence rates, resulted in high rates of sedimentation and resedimentation processes. As a whole, the sedimentary succession sets a relevant datum to be used in future paleogeographic reconstructions of the Vendian glacial record in southern South America.  相似文献   

6.
The late Ediacaran Billy Springs Formation is a little‐studied, mudstone‐dominated unit deposited in the Adelaide Rift Complex of South Australia. Sediments are exposed in an approximately 11 km × 15 km synclinal structure interpreted as a salt‐withdrawal minibasin. The stratigraphic succession is characterized by convolute‐laminated slump deposits, rhythmically laminated silty mudstones, rare diamictites and fining‐upward turbidite lithofacies. Lithofacies are the product of deposition in a deepwater slope or shelf setting, representing one of the few such examples preserved within the larger basin. Although exact correlations with other formations are unclear, the Billy Springs Formation probably represents the distal portion of a highstand systems tract, and is overlain by coarser sediments of the upper Pound Subgroup. Diamictite intervals are interpreted to be the product of mass flow processes originating from nearby emergent diapirs, in contrast to previous studies that suggest a glacial origin for extrabasinal clasts. Within the spectrum of outcropping minibasins around the world, the sediments described here are unique in their dominantly fine‐grained nature and overall lithological homogeneity. Exposures such as these provide an opportunity to better understand the sedimentological processes that operate in these environments, and provide an analogue for similar settings in the subsurface that act as hydrocarbon reservoir‐trap systems.  相似文献   

7.
The Kingston Peak Formation of the Pahrump Group in the Death Valley region of the Basin and Range Province, USA, is the thick (over 3 km) mixed siliciclastic–carbonate fill of a long‐lived structurally‐complex Neoproterozoic rift basin and is recognized by some as a key ‘climatostratigraphic’ succession recording panglacial Snowball Earth events. A facies analysis of the Kingston Peak Formation shows it to be largely composed of ‘tectonofacies’ which are subaqueous mass flow deposits recording cannibalization of older Pahrump carbonate strata exposed by local faulting. Facies include siltstone, sandstone and conglomerate turbidites, carbonate megabreccias (olistoliths) and related breccias, and interbedded debrites. Secondary facies are thin carbonates and pillowed basalts. Four distinct associations of tectonofacies (‘base‐of‐scarp’; FA1, ‘mid‐slope’; FA2, ‘base‐of‐slope’; FA3, and a ‘carbonate margin’ association; FA4) reflect the initiation and progradation of deep water clastic wedges at the foot of fault scarps. ‘Tectonosequences’ record episodes of fault reactivation resulting in substantial increases in accommodation space and water depths, the collapse of fault scarps and consequent downslope mass flow events. Carbonates of FA4 record the cessation of tectonic activity and resulting sediment starvation ending the growth of clastic wedges. Tectonosequences are nested within regionally‐extensive tectono‐stratigraphic units of earlier workers that are hundreds to thousands of metres in thickness, recording the long‐term evolution of the rifted Laurentian continental margin during the protracted breakup of Rodinia. Debrite facies of the Kingston Peak Formation are classically described as ice‐contact glacial deposits recording globally‐correlative panglacials but they result from partial to complete subaqueous mixing of fault‐generated coarse‐grained debris and fine‐grained distal sediment on a slope conditioned by tectonic activity. The sedimentology (tectonofacies) and stratigraphy (tectonosequences) of the Kingston Peak Formation reflect a fundamental control on local sedimentation in the basin by faulting and likely earthquake activity, not by any global glacial climate.  相似文献   

8.
This paper is a contribution to the knowledge of the sedimentation of Neoproterozoic sequences, known as the Jequitaı́ Formation and Macaúbas Group. These sequences are present along the transitional zone between the São Francisco Craton and the Brasiliano (≌600 Ma) Araçuaı́ fold belt in Minas Gerais, Brazil. A sedimentological study of these Neoproterozoic sequences enables us to distinguish between true continental and marine glacial facies and glacial material reworked by various subaqueous gravitational processes. The cratonic Jequitaı́ Formation consists of massive and stratified diamictites up to 100 m thick. This diamictite association is tentatively interpreted as glaciomarine in origin. It continues eastward, in the Araçuaı́ fold belt, as the metasedimentary Macaúbas Group, which is composed of metadiamictites, quartzites and schists from 5–12(?)km thick. The Macaúbas Group consists of resedimented glacial material deposited by subaqueous debris flows and turbidity currents. A depositional model is proposed for the Jequitaı́–Macaúbas glacial/gravitational sequence. From west to east, a glaciomarine sequence, possibly deposited from an ice-sheet and slightly reworked by gravitational processes, was reworked along the São Francisco cratonic border and generated a slope apron system made up of diamictites associated with turbidites and rhythmites.  相似文献   

9.
New outcrops of Middle Carboniferous glacigenic deposits found in the Guandacol Formation (western Paganzo Basin) are described in this paper. The study locality of Los Pozuelos Creek (northwestern Argentina) includes coarse-grained diamictites, rhythmites, laminated pebbly mudstones and shales that represent an expanded column of the Gondwanic glaciation in this region. Thirteen lithofacies recorded at the measured section have been grouped into three facies associations. Facies Association I is composed of coarse-grained massive and stratified diamictites (lithofacies Dmm, Dms, Dmg, Dcs), laminated siltstones with dropstones (Fld) and interstratified sandstones and mudstones (Fl, Sr). These rocks represent both tillites and resedimented diamictites closely associated to small water bodies where laminated siltstones with dropstones and stratified sandstones and mudstones were deposited. Facies Association II comprises couplets of matrix-supported thinly bedded diamictites (Dmld) and laminated mudstones with dropstones (Fld). This facies association results from the combination of three different processes, subaqueous cohesionless debris flows, coeval rainout of ice-rafted debris and settling of fine-grained particles from supension. Finally, Facies Association III is made up of laminated mudstones without dropstones, thin marl levels and scarce fine- to very fine-grained sandstones. This assemblage clearly suggests sedimentation in a deep marine environment below the wave base.The architecture of the glacigenic deposits has been investigated using photomosaic panels. The geometry of the depositional bodies and facies suggest that Los Pozuelos Creek outcrops exhibit a well preserved three-dimensional example of a grounding-line system. In particular, three different subenvironments of a morainal bank were interpreted: a bank-front, a bank-core and a bank-back. The bank-front assemblage is characterized by coarse-grained, mainly resedimented, diamictites grading laterally to prograding clinoforms composed of interbedded matrix-supported thinly bedded diamictite and mudstones. The bank-core assemblage is formed by a stacking of coarse-grained diamictites where at least five major erosional surfaces, bounding four multistory diamictite bodies, can be recognized. Finally, the bank-back assemblage corresponds to discontinuous intervals of striated lodgement till, and coarse-grained resedimented diamictites showing important post-depositional deformation. The retrogradational stacking of the morainal banks indicate an overall glacial retreat and a glacioeustatic sea-level rise. Erosional surfaces at the base of each morainal bank suggest intervening short term episodes of ice advance.The new data presented here confirm the existence of "true" tillites in western Paganzo Basin and suggest several (at least four) pulses of glacial advance and retreat during the Namurian glaciation in the region and permit a more refined interpretation of the glacial deposits in the Huaco area.  相似文献   

10.
The Bolla Bollana Formation is an exceptionally thick (ca 1500 m), rift‐related sedimentary succession cropping out in the northern Flinders Ranges, South Australia, which was deposited during the Sturtian (mid Cryogenian) glaciation. Lithofacies analysis reveals three distinct facies associations which chart changing depositional styles on an ice‐sourced subaqueous fan system. The diamictite facies association is dominant, and comprises both massive and stratified varieties with a range of clast compositions and textures, arranged into thick beds (1 to 20 m), representing stacked, ice‐proximal glaciogenic debris‐flow deposits. A channel belt facies association, most commonly consisting of normally graded conglomerates and sandstones, displays scour and fill structure of ca 10 m width and 1 to 3 m depth: these strata are interpreted as channelized turbidites. Rare mud‐filled channels in this facies association bear glacially striated lonestones. Finally, a sheet heterolithics facies association contains a range of conglomerates through sandstones to silty shales arranged into clear, normally graded cycles from the lamina to bed scale. These record a variety of non‐channelized turbidites, probably occupying distal and/or inter‐channel locations on the subaqueous fan. Coarsening and thickening‐up cycles, capped by dolomicrites or mudstones, are indicative of lobe build out and abandonment, potentially as a result of ice lobe advance and stagnation. Dropstones, recognized by downwarped and punctured laminae beneath pebbles to boulders in shale, or in delicate climbing ripple cross‐laminated siltstones, are clearly indicative of ice rafting. The co‐occurrence of ice‐rafted debris and striated lonestones strongly supports a glaciogenic sediment source for the diamictites. Comparison to Pleistocene analogues enables an interpretation as a trough mouth fan, most probably deposited leeward of a palaeo‐ice stream. Beyond emphasizing the highly dynamic nature of Sturtian ice sheets, these interpretations testify to the oldest trough mouth fan recorded to date.  相似文献   

11.
Recent work on the Late Palaeozoic Ice Age in eastern Australia has shown the Joe Joe Group in the eastern Galilee Basin, Queensland, to be of critical importance as it is one of few records of Pennsylvanian glacial activity outside South America. This paper presents detailed sedimentological data, from which the Late Palaeozoic environment of the region is reconstructed and which, consequently, allows for robust comment on the broader Gondwanan glaciation. The Jericho Formation, in the lower Joe Joe Group, was deposited in an active extensional basin in lacustrine to fluvial environments, during the mid‐Namurian to early Stephanian. The region experienced a cool climate during this time, and polythermal mountain or valley‐type glaciers periodically advanced into the area from highlands to the north‐east. The Jericho Formation preserves a suite of proglacial to terminal glacial facies that is characterized by massive and stratified diamictites deposited from debris flows, massive and horizontally laminated conglomerates and sandstones deposited from hyperconcentrated density flows, laminated siltstones with outsized clasts and interlaminated siltstone/conglomerate deposited through ice‐rafting into lakes, and sedimentary dykes and breccias deposited through overpressurization of groundwater beneath permafrost. Non‐glacial facies are dominated by fluvial sandstones and lacustrine/overbank siltstones. The glacigenic rocks of the Jericho Formation are confined to discrete packages, recording three separate glacial advances during the latest Namurian to late Westphalian. This arrangement is consistent with the temporal distribution of glacigenic rocks from around the remainder of Australia and Gondwana, which supports the theory that glacial deposits occurred in discrete intervals. The Joe Joe Group is a key succession in the world in this context as, at this time, eastern Australia provides the only unequivocal evidence of a Namurian/Westphalian glaciation outside South America. The continuous record of sedimentation through the Pennsylvanian and Early Permian is indicative of significant warming between glacial intervals, which is difficult to reconcile with the development of long‐lived, cold‐based ice sheets across the supercontinent.  相似文献   

12.
The Paraná Basin (1 600 000 km2) is the largest intracratonic basin in southern South America and contains a thick (1300 m) Permo-Carboniferous glacial succession (the Itararé Group). This paper describes over 1700 m of drill core recovered during recent exploration for oil and gas. Itararé Group sediments consist of massive and stratified diamictites interbedded with massive and graded sandstones, and massive and laminated mudstones. Facies are interpreted as the product of sediment gravity flows in a glacially influenced marine basin. Three stratigraphic formations can be defined across the basin, each consisting of a lowermost sandstone-rich member overlain by a diamictite-rich member. Examination of Itararé Group rocks both in core and outcrop shows that depositional processes were influenced by active faulting and downslope resedimentation on relatively steep and unstable substrate slopes. Primary glacial deposits such as tillites and associated striated pavements occur along the present eastern outcrop belt which probably coincided with the eastern basin margin during deposition of the Itararé Group. Ice masses fringing the eastern (southern African) and western (Bolivian) basin margins supplied sediment to the basin in the form of fluvio-glacial deltas, fans and floating ice tongues. This sediment was then resedimented downslope as debris flows and turbidites. Both stratigraphic relationships and the regional distribution of facies types identify a clear pattern of basin subsidence and step-wise expansion by outward faulting within Late Proterozoic mobile belts. The position of successive basin margins can be related to specific lineament structures in the underlying basement. Asymmetric expansion of the Paraná Basin occurred along the northern and southern basin margins during deposition of the Itararé Group; this expansion probably reflects shallow crustal adjustments activated by collisional movements along the Andean margin of South America during the Hercynian Orogeny.  相似文献   

13.
胡军  孙思远  谷昊东  安志辉  叶琴  王霈 《地球科学》2021,46(7):2515-2528
峡东地区是我国原震旦系标准剖面所在地,该地区南沱组直接覆盖莲沱组之上,中间缺失下冰期和间冰期地层,究其原因尚不清楚.通过聚焦南沱组与莲沱组接触层位,利用现代冰川沉积物研究方法开展系统沉积学研究,结果表明:九龙湾周缘南沱组和莲沱组之间存在一层紫红色混合杂砾岩层,其内部砾石定向性、形态、磨圆、岩性以及显微构造与之上南沱组典型灰绿色杂砾岩区别明显,青林口剖面南沱组底部发育微观尺度上的变形沉积构造.表明南沱组底部与莲沱组接触层位为冰川底碛成因,而南沱组主体为冰海沉积成因.证明峡东地区南沱组与莲沱组之间地层缺失是由盛冰期的冰川剥蚀所致,南沱组可能仅代表了盛冰期之后冰消期的沉积记录.   相似文献   

14.
15.
The Permo-Carboniferous Talchir Formation in the southeastern part of the Talchir basin is represented by about 260 m thick clastic succession resting on the Precambrian basement rocks of the Eastern Ghats Group. The succession is tentatively subdivided into four lithostratigraphic units, namely A-I, A-II, B and C from base to top. Unit A-I comprises mud-matrixed, very poorly sorted diamictites and interbedded thin sandstone and mudstone yielding dropstones. They reveal deposition in a proglacial lake environment in which ice rafting and suspension sedimentation, as well as meltwater-underflow processes, produced variety of facies. The succession of unit A-II is dominated by pebble to boulder conglomerates and sandstones. They were deposited mostly from various kinds of high-energy sediment gravity flows, both subaerial and subaqueous, and formed steep-faced fan-delta on the margin of the basin. Unit B demonstrates turbidite sedimentation in lake-margin slope and base-of-slope environments, in which a sublacustrine channel-fan system developed. The lake-margin slope was dissected by channels which were accompanied by overbank and levee deposits. Sediments delivered from the mouth of a channel were deposited at the base-of-slope, forming a fan lobe which prograded onto the lake basin floor. Unit C dominantly consists of mudstone with intercalations of siltstone and sandstone and forms a large-scale coarsening-upward deltaic sequence eventually covered by the fluvial deposits of the Karharbari Formation.Following the glacially influenced sedimentation, the Talchir succession shows a vertical facies progression suggesting gradual deepening of the lake basin and eventual filling up of it due to rapid delta progradation. Such a succession represents deglacial control on basin evolution during the Talchir time. In the initial stage of glacial recession, collapse of a glacier and failure of montane glacial lakes frequently occurred and gave rise to generation of a highly sediment-laden debris flow and a catastrophic flood, which brought abundant coarse clastics into the lake and built a fan-delta on the basin margin. The continued recession and disappearance of glacier resulted in abundant supply of ice-melt water into the graben as well as eustatic sea-level rise, being the cause of the rise in lake-level. Subsequent rapid delta progradation and eventual filling-up of the lake basin suggest rapid lake-level fall after deepening of lake basin. It was possibly caused by the regional uplift due to post-glacial isostatic rebound. Rapid draining of lake water through the graben gave rise to the establishment of an axial drainage system which rapidly filled the lake basin in form of an axially fed delta.  相似文献   

16.
Pebbly mudstones are a conspicuous element of sedimentary sequences deposited in different tectonic settings and sedimentary environments. Whereas for many diamictites a glacial origin seems plausible, the problem to distinguish glacial from non-glacial diamictites is often difficult for Precambrian examples where palaeoclimatic constraints are generally lacking. This article documents an Eocene pebbly mudstone of the Southhelvetic nappes of eastern Central Switzerland (Blockmergel) for which a glacial origin can be firmly rejected and which may thus serve as an example for non-glacial marine diamictites and their sedimentary and palaeotectonic environment. The Blockmergel are interpreted as the product of gravitational deposition of single blocks across steep palaeo-slopes (subaqueous rockfall) into a basin otherwise dominated by suspension settling sedimentation. The Blockmergel occur within the basal part of the early fill of the North Alpine Foreland Basin, which constitutes a deepening upward sequence above basal shallow marine limestones. The Blockmergel demonstrate substantial Middle to Late Eocene sub-aerial erosion and fluvial transport (producing the rounded pebbles) and local extensional fault movements in the proximal part of the incipient North Alpine Foreland Basin. They are capped sharply by forced-regressive shoreface sandstones and the whole sequence thus demonstrates locally very shallow to subaerial conditions within an otherwise rather deep hemipelagic marine basin. This, and the extensional fault movements, are linked to a long-standing feature of Helvetic palaeogeography—the Southhelvetic swell zone. That this swell still operated during the Priabonian i.e. shortly before finally being overthrust by the orogenic wedge of the evolving Alpine orogen is a new element in Alpine palaeotectonics and seems to highlight the importance of the reactivation of inherited palaeotectonic faults. Finally, the example of the Blockmergel is suggested as a useful analogue to help distinguishing glacial-sourced from slope-derived diamictites in the Neoproterozoic sedimentary record and may thus help resolving the “diamictite dichotomy”.  相似文献   

17.
《Sedimentary Geology》2006,183(1-2):99-124
The snowball Earth hypothesis suggests that the Neoproterozoic was characterized by several prolonged and severe global glaciations followed by very rapid climate change to ‘hot house’ conditions. The Neoproterozoic Port Askaig Formation of Scotland consists of a thick succession of diamictite, sandstone, conglomerate and mudstone. Sedimentological and stratigraphic analysis of Port Askaig deposits exposed on the Garvellach Islands was carried out to establish the nature of Neoproterozoic palaeoenvironmental change preserved in this thick succession. Particular emphasis was placed on identifying and distinguishing between climatic and tectonic controls on sedimentation.Port Askaig Formation diamictite units are attributed to deposition by sediment gravity flow processes or ‘rainout’ of fine-grained sediment and ice-rafted debris in a glacially influenced marine setting. Associated facies record various depositional processes ranging from sediment gravity flows (conglomerate, massive sandstone and laminated mudstone) to deposition under other unidirectional currents (cross-bedded and horizontally laminated sandstone). The Port Askaig Formation is also characterized by abundant soft sediment deformation features that occur at discrete intervals and are interpreted to record episodic seismic activity.Stratigraphic analysis of the Port Askaig Formation on the Garvellach Islands reveals three phases of deposition. Phase I was dominated by sediment gravity flow processes and sedimentation was primarily tectonically controlled. Phase II was a transitional phase characterized by continued tectonic-instability, an increased supply of sand to the basin and the preservation of current-generated facies. In the third and final phase of deposition, the interbedded units of sandstone and diamictite are interpreted to reflect development of large sandy bedforms and ice margin fluctuations in a tectonically stable marine setting.Sedimentological and stratigraphic analysis of the Port Askaig Formation demonstrates that tectonic activity had a significant influence on development of the lowermost parts of the succession. Climatic influences on sedimentation are difficult to identify during such phases of tectonic activity but are more easily discerned during episodes of tectonic quiescence (e.g.,, Phase III of the Port Askaig Formation). The thick succession of diamictite interbedded with current-deposited sandstone preserved within the Port Askaig Formation is not consistent with deep freeze conditions proposed by the snowball Earth hypothesis.  相似文献   

18.
Large isolated gravity flows (debrites) are widely present in the stratigraphic record of the northern Apennines foreland-basin system. These strata may be useful for provenance signals and dispersal pathways during foreland evolution. This paper examines a cohesive debris flow bed interbedded with turbidite strata of the Macigno Formation (Late Oligocene, Tuscany, Italy), in order to obtain new data on the provenance of the clastic material. Clasts in the debris flow are predominantly plutonic (granodiorite, tonalite, and S-granite) and subordinately metamorphic (gneiss and schist) and sedimentary calcareous clasts. The composition of the clasts within the debris flow is similar to the clastic composition of the interbedded turbidite sandstones of the "Macigno costiero." The depositional features of the debris flow suggest that it traveled for a short distance within the basin before it was deposited not far from the slope. The absence of a high-pressure/low-temperature (HP/LT) paragenesis in the plutonic and metamorphic clasts of the debris flow indicates a provenance from a crystalline basement not involved in the high-pressure phases of the Alpine Orogenesis. Previous studies have indicated the Central-Western Alps as potential source areas for the Macigno Formation sediments. The lack of HP/LT metamorphic signatures in our studied samples excludes the Pennidic and Austroalpine nappes of the Western Alps as possible sources for the debris flows of the "Macigno costiero." These new data (sedimentological, petrographical, and microstructural) suggest that the Corsica-Sardinia Hercynian basement, lacking a HP/LT paragenesis, is the more accredited source area of the debris flow and of the related turbidite sandstones of the "Macigno costiero" succession. These foredeep-feeding sediments were probably before deposited within an episutural basin developed close to the northern Apennines orogenic wedge.  相似文献   

19.
One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern São Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 ± 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.  相似文献   

20.
The Chuos Formation is a diamictite-dominated succession of Cryogenian age, variously interpreted as the product of glaciomarine deposition, glacially related mass movement, or rift-related sediment remobilisation in a non-glacial environment. These interpretations have wide ranging implications for the extent of ice cover during the supposedly pan-global Neoproterozoic icehouse. In the Otavi Mountainland, northern Namibia, detailed analysis of soft-sediment deformation structures on the macro- and micro-scale support glacitectonic derivation in response to overriding ice from the south/south-east. Overall, the upward increase in strain intensity, predominance of ductile deformation features (e.g. asymmetric folds, rotational turbates and necking structures, clast boudinage, unistrial plasmic fabrics) and pervasive glacitectonic lamination support subglacial deformation under high and sustained porewater pressures. In contrast, soft-sediment structures indicative of mass movements, including flow noses, tile structures, and basal shear zones, are not present. The close association of subglacial deformation, abundant ice-rafted debris and ice-contact fan deposits indicate subaqueous deposition in an ice-proximal setting, subject to secondary subglacial deformation during oscillation of the ice margin. These structures thus reveal evidence of dynamic grounded ice sheets in the Neoproterozoic, demonstrating their key palaeoclimatic significance within ancient sedimentary successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号