首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A long‐lasting rainstorm event from 20 to 22 August 2005 affected a large part of the northern Alps and Prealps in Switzerland. It resulted in elevated discharges and flooding in many headwater catchments and mountain rivers. The associated geomorphic processes included shallow landslides, deep‐seated slope instabilities, debris flows, and fluvial sediment transport. In many parts of the affected areas human activities are important, including many buildings, traffic lines and other infrastructure. In the steeper parts, geomorphic processes were mainly responsible for flow overtopping and sediment deposition both in and outside of the channel network. In the lower parts, lateral erosion and exceedance of the channel discharge capacity were the main reasons for morphologic channel modification and flooding. Sediment‐related processes contributed a lot to the overall damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Effectively managing and reducing high suspended sediment loads in rivers requires an understanding of the magnitude of major sediment sources as well as erosion and transport processes that deliver excess fine sediments to the channel network. The focus of this research is to determine the magnitude of erosion from tall bluffs, a primary sediment source in the 2880 km2 Le Sueur watershed, Minnesota, USA. We coupled analyses of seven decades of aerial photographs with four years of repeat terrestrial laser scanning (TLS) to determine erosion rates on bluffs. Together, these datasets provide decadal‐scale retreat rates throughout the entire watershed and high‐resolution geomorphic change detection on a subset of bluffs to both constrain erosion rates and document how environmental conditions affect bluff retreat. Erosion rates from aerial photographs and TLS were extrapolated from 243 and 15 measured bluffs, respectively, to all 480 bluffs in the Le Sueur watershed using multiple techniques to obtain estimates of sediment loading from these features at the watershed‐scale. Despite different spatial and temporal measurement scales, the aerial photograph and TLS estimates yielded similar results for bluff retreat rate and total mass of sediment derived from bluffs, with bluffs in the Le Sueur watershed yielding 135 000 ± 39 000 Mg/yr of fine sediment. Comparing this value to the average annual total suspended solids (TSS) load determined from gauging from 2000 to 2010, we determined that bluffs comprise 57 ± 16% of the total TSS load, making bluffs the single most abundant fine sediment source in the basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The links between flood frequency and rates of channel migration are poorly defined in the ephemeral rivers typical of arid regions. Exploring these links in desert fluvial landscapes would augment our understanding of watershed biogeochemistry and river morphogenesis on early Earth (i.e. prior to the greening of landmasses). Accordingly, we analyse the Mojave River (California), one of the largest watercourses in the Great Basin of the western United States. We integrate discharge records with channel-migration rates derived from dynamic time-warping analysis and chronologically calibrated subsidence rates, thereby constraining the river's formative conditions. Our results reveal a slight downstream decrease in bankfull discharge on the Mojave River, rather than the downstream increase typically exhibited by perennial streams. Yet, the number of days per year during which the channel experiences bankfull or higher stages is roughly maintained along the river's length. Analysis of historical peak flood records suggests that the incidence of channel-formative events responds to modulation in watershed runoff due to the precipitation in the river's headwaters over decades to centuries. Our integrated analysis finally suggests that, while maintaining hydraulic geometries that are fully comparable with many other rivers worldwide, ephemeral desert rivers akin to the Mojave are capable of generating a surprisingly wide range of depositional geometries in the stratigraphic record. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash–saltation processes can move sediments in conditions where no motion is predicted by aeolian processes. The effect of raindrop impact on the movement of soil particles by wind was measured on a sand beach plain using an acoustic sediment sampler. In general, an increase of particle movement by wind at the sensor heights was observed during rainfall. Rainfall also affected the wind erosion process during and after rain by changing the cohesive conditions of the surface. The influence of the surface moisture content on the initiation of wind erosion and on the vertical distribution of transported sand particles was studied in a wind tunnel. Moisture significantly increased threshold wind velocities for the initiation of sediment transport and modified vertical sediment profiles.  相似文献   

6.
Aeolian processes – the erosion, transport, and deposition of sediment by wind – play important geomorphological and ecological roles in drylands. These processes are known to impact the spatial patterns of soil, nutrients, plant-available water, and vegetation in many dryland ecosystems. Tracers, such as rare earth elements and stable isotopes have been successfully used to quantify the transport and redistribution of sediment by aeolian processes in these ecosystems. However, many of the existing tracer techniques are labor-intensive and cost-prohibitive, and hence simpler alternative approaches are needed to track aeolian redistribution of sediments. To address this methodological gap, we test the applicability of a novel metal tracer-based methodology for estimating post-fire aeolian sediment redistribution, using spatio-temporal measurements of low-field magnetic susceptibility (MS). We applied magnetic metal tracers on soil microsites beneath shrub vegetation in recently burned and in control treatments in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate a spatially homogeneous distribution of the magnetic tracers on the landscape after post-burn wind erosion events. MS decreased after wind erosion events on the burned shrub microsites, indicating that these areas functioned as sediment sources following the wildfire, whereas they are known to be sediment sinks in the undisturbed (e.g. not recently burned) ecosystem. This experiment represents the first step toward the development of a cost-effective and non-destructive tracer-based approach to estimate the transport and redistribution of sediment by aeolian processes. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
In aeolian sand sheets the interaction between aeolian and subaqueous processes is considered one of the principal factors that controls this depositional environment. To examine the role played by the subaqueous processes on the construction and accumulation of sand sheets, surface deposits and subsurface sedimentary sections of a currently active aeolian sand sheet, located in the Upper Tulum Valley (Argentina), have been examined. On the sand sheet surface, airflows enable the construction of nabkhas, wind‐rippled mantles (flattened accumulations of sand forming wind ripples), megaripples, and small transverse dunes. Subaqueous deposits consist of sandy current ripples covered by muddy laminae. The latter are generated by annual widespread but low‐energy floods that emanate from the nearby mountains in the aftermath of episodes of heavy precipitations. Deposits of subaqueous origin constitute 5% of the accumulated sand sheet thickness. The construction of the sand sheet is controlled by meteorological seasonal changes: the source area, the San Juan river alluvial fan, receives sediment by thaw‐waters in spring–summer; in fall–winter, when the water table lowers in the alluvial fan, the sediment is available for aeolian transport and construction of the sand sheet area. The flood events play an important role in enabling sand sheet accumulation: the muddy laminae serve to protect the underlying deposits from aeolian winnowing. Incipient cement of gypsum on the sand and vegetation cover acts as an additional stabilizing agent that promotes accumulation. Episodic and alternating events of erosion and sedimentation are considered the main reason for the absence of soils and palaeosols. Results from this study have enabled the development of a generic model with which to account for: (i) the influence of contemporaneous subaqueous processes on the construction and accumulation in recent and ancient sand sheets; and (ii) the absence of developed soils in this unstable topographic surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The aeolian sand transport model SAFE and the air flow model HILL were applied to evaluate cross‐shore changes at two nourished beaches and adjacent dunes and to identify the response of aeolian sand transport and morphology to several nourishment design parameters and fill characteristics. The main input of the model consisted of data on the sediment, tide and meteorological conditions, and of half‐yearly measured characteristics of topography, vegetation and sand fences. The cross‐shore profiles generated by SAFE–HILL were compared to measured cross‐shore profiles. The patterns of erosion and deposition, and the morphological development corresponded. In general, the rates of aeolian sand transport were overestimated. The impact of parameters that are related to beach nourishment (namely grain size, adaptation length and beach topography) on profile development was evaluated. Grain size affected the aeolian sand transport rate to the foredunes, and therefore the morphology. Adaptation length, which is a measure of the distance over which sediment transport adapts to a new equilibrium condition, affected the topography of the beach in particular. The topography of a beach nourishment had limited impact on both aeolian sand transport rate and morphology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Total soil erosion is a result of both aeolian and fluvial processes, which is particularly true in semiarid regions. However, although physically interrelated, these two processes have conventionally been studied and modelled independently. Recently, a few researchers highlighted the importance and need of considering both processes in concert as well as their interactions, but they did not give specific modelling approaches or algorithms. The objectives of this study were to (1) formulate an integrated aeolian and fluvial prediction (IAFP) model, (2) parameterize the IAFP model for a semiarid steppe watershed located in northeastern China by using literature and historical data and (3) use the model to predict soil erosion in the watershed and assess the sensitivity of predicted erosion to environmental factors such as soil moisture and vegetation coverage. The results indicated that the IAFP model can capture the dynamic interactions between aeolian and fluvial erosion processes. For the study watershed, the model predicted a higher occurrence frequency of fluvial erosion than that of aeolian erosion and showed that these two processes almost equivalently contributed to the average total erosion of 0.07 mm year?1 across the simulation period. The ‘existing’ vegetation cover can provide an overall good protection of the soils, although the vegetation cover was predicted to play a larger role in a drier than a wetter year as well as in controlling aeolian than fluvial erosion. In addition, soil erosion was predicted to be more sensitive to soil moisture than land coverage. A soil moisture level of 0.23–0.25 was determined to be the probable switch point from aeolian‐to fluvial‐dominant process or vice versa. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Process dynamics in fluvial‐based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam‐building affect fluvial processes, the complexity in local response can be further increased by flood‐ and sediment‐limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi‐temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446‐km‐long semi‐arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam‐controlled fluvial sand bar deposition, aeolian sand transport, and rainfall‐induced erosion. Empirical rainfall‐erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration‐excess overland flow and gullying govern large‐scale (centimeter‐ to decimeter‐scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic‐driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four‐minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short‐term, storm‐driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi‐arid landscapes where process complexity may not be fully understood. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

12.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In agricultural basins of the southeastern coastal plain there are typically large disparities between upland soil erosion and sediment delivered to streams. This suggests that colluvial storage and redistribution of eroded soil within croplands is occurring, and/or that processes other than fluvial erosion are at work. This study used soil morphology and stratigraphy as an indicator of erosion and deposition processes in a watershed at Littlefield, North Carolina. Soil stratigraphy and morphology reflect the ways in which mass fluxes associated with cultivation transform the local soils. Fluvial, aeolian and tillage processes were all found to be active in the redistribution of soil. The soil transformations are of five general types. First, erosion and compaction in the cultivated area as a whole result in the thinning of Arenic and Grossarenic Paleudults and Paleaquults to form Arenic, Typic and Aquic Paleudults and Paleaquults. Second, redistribution of surficial material within the fields results in transitions between Arenic and Typic or Aquic subgroups as loamy sand A and E horizons are truncated or accreted. Third, aeolian deposition at forested field boundaries leads to the formation of compound soils with podzolized features. Fourth, sandy rill fan deposits at slope bases create cumulic soils distinct from the loamy sands of the source area or the darker, finer terrace soils buried by the fan deposits. Finally, tillage and fluvial deposition in upland depressions results in the gradual burial of Rains (poorly drained Typic Paleaquults) soils. Results confirm the importance of upland sediment storage and redistribution, and the role of tillage and aeolian processes as well as fluvial processes in the region. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Sediment distribution is investigated applying grain size analysis to 279 surface samples from the transitional zone between high mountains (Qilian Shan) and their arid forelands (Hexi Corridor) in north‐western China. Six main sediment types were classified. Medium scale (103 m) geomorphological setting is carefully considered as it may play an important role concerning sediment supply and availability. A tripartite distribution of sedimentological landscape units along the mountain to foreland transition is evident. Aeolian sediments (e.g. loess and dune sands) are widespread. They are used to identify aeolian transport pathways. The mU/fS‐ratio (5–11 µm/48–70 µm) among primary loess opposes the two grain size fractions being most sensitive to varying accumulation conditions. The first fraction is attributed to long‐distance transport in high suspension clouds whereas the latter represents local transport in saltation mode. The ratio shows strong correlation with elevation (R2 = 0.77). Thus, it indicates a relatively higher far‐traveled dust supply in mountainous areas (>3000 m above sea level [a.s.l.]) compared to the foreland. The contribution of westerlies to high mountain loess deposits is considered likely. Hereby, the influence of the geomorphological setting on grain size composition of aeolian sediments becomes apparent: the contribution from distant dust sources is ubiquitous in the study area. However, the far‐distance contribution may be reduced by the availability of fine sand provided in low topography settings. Plain foreland areas support fine sand deflation from supplying river beds, allowing the formation of sandy loess in foreland areas and intramontane basins. In contrast, high mountain topography inhibits strong sand deflation into loess deposits. Eastern parts of the Hexi Corridor show higher aeolian sand occurrence. In contrast, the western parts are dominated by gravel gobi surfaces. This is attributed to higher sand supply in eastern parts provided by the Badain Jaran Desert and fluvial storages as sand sources. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The uranium-series isotope signatures of the suspended and dissolved load of rivers have emerged as an important tool for understanding the processes of erosion and chemical weathering at the scale of a watershed. These signatures are a function of both time and weathering-induced fractionation between the different nuclides. Provided appropriate models can be developed, they can be used to constrain the residence time of river sediment. This chronometer is triggered as the bedrock starts weathering and the inferred timescale encompasses the residence time in the weathering profile, storage in temporary sediment deposits (e.g. floodplain) and transport in the river. This approach has been applied to various catchments over the past five years showing that river sediments can reside in a watershed for timescales ranging from a few hundreds of years (Iceland) to several hundreds of thousands of years (lowlands of the Amazon). Various factors control how long sediment resides in the watershed: the longest residence times are observed on stable cratons unaffected by glacial cycles (or more generally, climate variability) and human disturbance. Shorter residence times are observed in active orogens (Andes) or fast-eroding, recently glaciated catchments (Iceland). In several cases, the residence time of suspended sediments also corresponds to the time since the last major climate change. The U-series isotope composition of rivers can also be used to predict the river sediment yield assuming steady-state erosion is reached. By comparing this estimate with the modern sediment yield obtained by multi-year sediment gauging, it is clear that steady-state is seldom reached. This can be explained by climate variability and/or human disturbance. Steady-state is reached in those catchments where sediment transport is rapid (Iceland) or where the region has been unaffected by climate change and/or human disturbance. U-series are thus becoming an important tool to study the dynamics of erosion.  相似文献   

19.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Landslides generate enormous volumes of sediment in mountainous watersheds; however, quantifying the downstream transport of landslide‐derived sediment remains a challenge. Landslide erosion and sediment delivery to the Shihmen Reservoir watershed in Taiwan was estimated using empirical landslide frequency–area and volume–area relationships, empirical landslide runout models, and the Hydrological Simulation Program‐ FORTRAN (HSPF). Landslide erosion rates ranged from 0.4 mm yr‐1 to 2.2 mm yr‐1 during the period 1986–2003, but increased to 7.9 mm yr‐1 following Typhoon Aere in 2004. The percentage of landslide sediment delivered to streams decreased from 78% during the period 1986–1997 to 55% in 2004. Although the delivery ratio was lower, the volume of landslide sediment delivered to streams was 2.81 × 106 Mg yr‐1 in 1986–1997 and 8.60 × 106 Mg yr‐1 in 2004. Model simulations indicate that only a small proportion of the landslide material was delivered downstream. An average of 13% of the landslide material delivered to rivers was moved downstream during the period 1986–1997. In 2004, the period including Typhoon Aere, the annual fluvial sediment yield accounted for approximately 23% of the landslide material delivered to streams. In general, the transfer of sediment in the fluvial system in the Shihmen Reservoir watershed is dominantly transport limited. The imbalance between sediment supply and transport capacity has resulted in a considerable quantity of landslide material remaining in the upper‐stream regions of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号