首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of La Ni?a on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Ni?a events considered. This study shows that this is mainly due to the decadal variation of La Ni?a's impact on the winter Arctic stratosphere since the late 1970 s. Specifically,during the period1951–78,the tropospheric La Ni?a teleconnection exhibits a typical negative Pacific–North America pattern,which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere,and leads to a significantly strengthened stratospheric polar vortex. In contrast,during 1979–2015,the La Ni?a teleconnection shifts eastwards,with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Ni?a teleconnection with climatological stationary waves seen in the earlier period reduces greatly,which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly,the stratospheric response shows a less disturbed stratospheric polar vortex in winter.  相似文献   

2.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Ni?na) to a warm water state (El Ni?no) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980–2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Ni?no (or La Ni?na) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Ni?no and La Ni?na events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Ni?no event to a La Ni?na event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Ni?no or La Ni?na event at least one year in advance.  相似文献   

3.
It has been suggested that a warm(cold)ENSO event in winter is mostly followed by a late(early)onset of the South China Sea(SCS)summer monsoon(SCSSM)in spring.Our results show this positive relationship,which is mainly determined by their phase correlation,has been broken under recent rapid global warming since 2011,due to the disturbance of cold tongue(CT)La Ni?a events.Different from its canonical counterpart,a CT La Ni?a event is characterized by surface meridional wind divergences in the central-eastern equatorial Pacific,which can delay the SCSSM onset by enhanced convections in the warming Indian Ocean and the western subtropical Pacific.Owing to the increased Indian?western Pacific warming and the prevalent CT La Ni?a events,empirical seasonal forecasting of SCSSM onset based on ENSO may be challenged in the future.  相似文献   

4.
A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.  相似文献   

5.
Summer rainfall variations in North China closely relate to that in India. It seems that an alternation of signs of " , -, " exists in the geographical pattern of the correlation in summer rainfall from North China to India through the Tibetan Plateau. However, it appears that the teleconnection of summer rainfall variations between North China and India is unstable. Over 1945 - 1974, the correlation coefficient (hereafter as CC) is as large as 0.7. In contrast, the CC is about-0.3 over 1827-1856. Further studies, based on observations starting from 1813, showed that the correlation is strong when summer rainfalls in both North China and India are large, and vice versa. In order to find what induce the change of the teleconnection, variations of summer rainfall in both North China and India, mean sea surface temperature (SST) in the eastern equatorial Pacific and the frequency of ENSO events were examined in relation to the change of the teleconnection. The result showed that the teleconnection appears weak when the mean SST is high and the frequency of La Nia events is low; the teleconnection is strong when the mean SST is low and the frequency of La Nia events is high. At last, it is notable that La Nia happens in only 3 years during the recent 30 years from 1976 to 2005 and the teleconnection becomes weak too.  相似文献   

6.
This study investigates how the El Ni?o–Southern Oscillation(ENSO) modulates the intraseasonal variability(ISV) of Pacific–Japan(PJ) teleconnection pattern. The PJ index during boreal summer is constructed from the empirical orthogonal function(EOF) of the 850-hPa zonal wind(U850) anomalies. Distinct periods of the PJ index are found during El Ni?o and La Ni?a summers. Although ISV of the PJ pattern is significant during 10–25 days for both types of summers, it peaks on Days 30 and 60 in El Ni?o and La Ni?a summers respectively. During El Ni?o summers, the 30-day ISV of PJ pattern is related to the northwestward propagating intraseasonal oscillation(ISO) over the western North Pacific(WNP), which is originated from the tropical Indian Ocean(IO). During La Ni?a summers,the 60-day ISV of PJ pattern is related to the northeastward propagating ISO from the tropical IO. The low-frequency ISV modes in both El Ni?o and La Ni?a summers are closely related to the boreal summer ISO(BSISO), and the high-frequency ISV modes over WNP are related to the quasi-biweekly oscillation. The underlying mechanisms for these different evolutions are also discussed.  相似文献   

7.
The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Nu- merical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evaluated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during El Nio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during El Nio decaying summers and La Nia decaying summers, respectively. The stronger magnitude above-normal rainfall during El Nio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nia decaying summers;less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations.  相似文献   

8.
The western North Pacific anomalous anticyclone(WNPAC) is an important atmospheric circulation system that conveys El Ni?o impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Ni?o mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Ni?o decaying summer.The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Ni?o decaying/La Ni?a developing or La Ni?a persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

9.
El Ni?o–Southern Oscillation(ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon(EAWM). However, the effect of La Ni?a events on the EAWM is not a mirror image of that of El Ni?o events. Although the EAWM becomes generally weaker during El Ni?o events and stronger during La Ni?a winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Ni?o years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific(WNP) anticyclone during El Ni?o events and the WNP cyclone during La Ni?a events; specifically, the center of the WNP cyclone during La Ni?a events is westward-shifted relative to its El Ni?o counterpart. This central-position shift results from the longitudinal shift of remote El Ni?o and La Ni?a anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP.However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project(CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.  相似文献   

10.
Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Ni?a after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Ni?a prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Ni?a development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.  相似文献   

11.
The impact of sea surface temperature (SST) on winter haze in Guangdong province (WHDGD) was analyzed on the interannual scale. It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD. Cold (warm) SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold (warm) Kelvin waves through the Gill forced response, causing Ekman convergence (divergence) in the western Pacific, inducing abnormal cyclonic (anticyclonic) circulation. It excites the positive (negative) Western Pacific teleconnection pattern (WP), which results in the temperature and the precipitation decrease (increase) in Guangdong and forms the meteorological variables conditions that are conducive (not conducive) to the formation of haze. ENSO has an asymmetric influence on WHDGD. In El Ni?o (La Ni?a) winters, there are strong (weak) coordinated variations between the northern Indian Ocean, the northwest Pacific, and the eastern Pacific, which stimulate the negative (positive) phase of WP teleconnection. In El Ni?o winters, the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean, vertical advection from the moisture convergence, and the increased atmospheric apparent moisture sink (Q2) from soil evaporation. The weakening of the atmospheric apparent heat source (Q1) in the upper layer is not conducive to the formation of inversion stratification. In contrast, in La Ni?a winters, the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss. Due to the Q1 increase in the upper layer, the temperature inversion forms and suppresses the diffusion of haze.  相似文献   

12.
Based on Global Ocean Data Assimilation System(GODAS) and NCEP reanalysis data, atmospheric and oceanic processes possibly responsible for the onset of the 2011/12 La Nia event, which followed the 2010/11 La Nia even—referred to as a "double dip" La Nia—are investigated. The key mechanisms involved in activating the 2011/12 La Nia are illustrated by these datasets. Results show that neutral conditions were already evident in the equatorial eastern Pacific during the decaying phase of the 2010/11 La Nia. However, isothermal analyses show obviously cold water still persisting at the surface and at subsurface depths in off-equatorial regions throughout early 2011, being most pronounced in the tropical South Pacific. The negative SST anomalies in the tropical South Pacific acted to strengthen a southern wind across the equator. The subsurface cold water in the tropical South Pacific then spread northward and broke into the equatorial region at the thermocline depth. This incursion process of off-equatorial subsurface cold water successfully interrupted the eastern propagation of warm water along the equator, which had previously accumulated at subsurface depths in the warm pool during the 2010/11 La Nia event. Furthermore, the incursion process strengthened as a result of the off-equatorial effects, mostly in the tropical South Pacific. The negative SST anomalies then reappeared in the central basin in summer 2011, and acted to trigger local coupled air–sea interactions to produce atmospheric–oceanic anomalies that developed and evolved with the second cooling in the fall of 2011.  相似文献   

13.
Structure of South Asia High in the stratosphere and influence of ENSO   总被引:2,自引:1,他引:1  
The structure of the South Asia High(SAH)in the stratosphere and the influence of ENSO on the SAH are systematically investigated with the long-term ECMWF reanalysis data.The results show that the SAH only exists in low levels of the stratosphere.The maximum intensity of the High is located at around 150 hPa and there is no obvious anti-cyclonic structure above 50 hPa.The axis of the SAH center tends to be northwest slanting from lower levels to higher levels.Further analyses show that the geopotential height and temperature fields of the SAH have dramatic anomalies during El Ni?o years and La Ni?a years. Corresponding to the ENSO,the SAH is weaker(stronger)at the warm(cold)phase.  相似文献   

14.
Three extreme cold events invaded China during the early winter period between December 2020 to mid-January 2021 and caused drastic temperature drops,setting new low-temperature records at many stations during 6?8 January 2021.These cold events occurred under background conditions of low Arctic sea ice extent and a La Ni?a event.This is somewhat expected since the coupled effect of large Arctic sea ice loss in autumn and sea surface temperature cooling in the tropical Pacific usually favors cold event occurrences in Eurasia.Further diagnosis reveals that the first cold event is related to the southward movement of the polar vortex and the second one is related to a continent-wide ridge,while both the southward polar vortex and the Asian blocking are crucial for the third event.Here,we evaluate the forecast skill for these three events utilizing the operational forecasts from the ECMWF model.We find that the third event had the highest predictability since it achieves the best skill in forecasting the East Asian cooling among the three events.Therefore,the predictability of these cold events,as well as their relationships with the atmospheric initial conditions,Arctic sea ice,and La Ni?a deserve further investigation.  相似文献   

15.
Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI) and the China Multi-Model Ensemble(CMME) El Ni?o-Southern Oscillation(ENSO) Outlook issued in April 2022, La Ni?a is favored to continue through the boreal summer and fall, indicating a high possibility of a three-year La Ni?a(2020–23). It would be the first three-year La Ni?a since the 1998–2001 event, which is the only observed three-year La Ni?a event since 1980. By exam...  相似文献   

16.
Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identified to be the factors that contribute to the interannual variability of landfalling TCs.El Ni o Modoki years are associated with a greater-than-average frequency of landfalling TCs in China,but reversed in canonical El Ni o years.Significant difference in genesis locations of landfalling TCs in China for the two kinds of El Ni o phases occurs dominantly in the northern tropical western North Pacific(WNP).The patterns of low-level circulation anomalies and outgoing longwave radiation(OLR) anomalies associated with landfalling TC genesis with different types of El Ni o phases are examined.During canonical El Ni o years,a broad zonal band of positive OLR anomalies dominates the tropical WNP,while the circulation anomalies exhibit a meridionally symmetrical dipole pattern with an anticyclonic anomaly in the subtropics and a cyclonic anomaly near the tropics.In El Ni o Modoki years,a vast region of negative OLR anomalies,roughly to the south of 25°N with a strong large-scale cyclonic anomaly over the tropical WNP,provides a more favorable condition for landfalling TC genesis compared to its counterpart during canonical El Ni o years.For more landfalling TCs formed in the northern tropical WNP in El Ni o Modoki years,there are more TCs making landfall on the northern coast of China in El Ni o Modoki years than in canonical El Ni o years.The number of landfalling TCs is slightly above normal in canonical La Ni a years.Enhanced convection is found in the South China Sea(SCS) and the west of the tropical WNP,which results in landfalling TCs forming more westward in canonical La Ni a years.During La Ni a Modoki years,the landfalling TC frequency are below normal,owing to an unfavorable condition for TC genesis persisting in a broad zonal band from 5°N to 25°N.Since the western North Pacific subtropical high(WNPSH) in La Ni a Modoki years is located in the westernmost region,TCs mainly make landfall on the south coast of China.  相似文献   

17.
In summer 2018, a total of 18 tropical cyclones(TCs) formed in the western North Pacific(WNP) and South China Sea(SCS), among which 8 TCs landed in China, ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward, bringing in heavy rainfall and strong winds in eastern China and Japan. The present study investigates the impacts of decaying La Ni?a and intraseasonal oscillation(ISO) on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses. It is found that the La Ni?a episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST) over central–western Pacific, lower sea level pressure and 500-hPa geopotential height over WNP, and abnormally strong convective activities over the western Pacific in summer 2018. These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer. Detailed examination reveals that the monsoon trough was located further north and east, inducing more TCs in northern and eastern WNP; and the more eastward WNP subtropical high as well as the significant wave train with a "-+-+" height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks. Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO) occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO) was also active over WNP, propagating northward significantly, corresponding to the more northward TC tracks. The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere, conducive to TC occurrences. In a word, the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Ni?a, and the MJO and BSISO; their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest to northward than normal.  相似文献   

18.
The different impacts of El Ni?o during peak phases with and without a positive Indian Ocean Dipole (P-IOD) on the Northwest Pacific circulation were studied. The authors focused on the Northwest Pacific circulation features in the mature phase of El Ni?o from September to February of the next year. Composite maps and simulations demonstrate that the atmospheric circulation under the impact of El Ni?o with and without P-IOD exhibits large differences in temporal evolution and intensity. In single El Ni?o (SE) years without a P-IOD, an anomalous low-level anticyclonic circulation around the Philippines (PSAC) is instigated by the single El Ni?o-induced Indonesian subsidence. However, during the years when El Ni?o and a P-IOD matured simultaneously, a much greater anomalous subsidence over the western Pacific and the Maritime Continent occurred. The PSAC tends to occur earlier, is much stronger and has a longer lifetime than that during SE. More importantly, the PSAC shows a characteristic of an eastward movement from the southern South China Sea (SCS) to the Philippine Sea. This characteristic does not appear during SE. These patterns imply that a positive IOD event tends to exert a prominent influence on the PSAC during El Ni?o events and there is a combined impact of El Ni?o and P-IOD on the development of the PSAC.  相似文献   

19.
The floods caused by the extreme precipitation in the Yangtze River basin(YRB) and Murray–Darling River basin(MDRB), the largest basins in China and Australia, have significant impacts on the society and regional economies.Based on the spatial–temporal analysis of the daily precipitation extremes(DPEs) during 1982–2016, we found that for both basins, the whole-basin-type DPEs have the highest proportion and a synchronous DPE interannual variation characteristic exists in the two basins, with the 3-yr running correlation coefficient of the annual DPE days(DPEDs) reaching almost 0.7(significant at the 0.01 level). The El Ni?o–Southern Oscillation(ENSO), which is one of the most significant climate disturbance factors in the world, plays an important role in modulating the variability of the DPEs in the two basins. Singular value decomposition(SVD) analysis revealed that both the YRB and the MDRB's whole-basin-type DPEs are closely coupled with the procedure that the preceding winter eastern Pacific(EP)-type El Ni?o faded to a central Pacific(CP)-type La Ni?a. This means that the DPEs in the YRB and MDRB may synchronously occur more frequently when the above process occurs. Owing to the atmosphere–ocean interaction from the east–west dipole sea surface temperature(SST) anomaly pattern, the atmospheric circulation disturbance exhibits a pattern in which the equatorial eastern Pacific region is a mass source anomaly with a higher pressure,drier air, and weaker convection, while the equatorial western Pacific region is a mass sink anomaly with a lower pressure, wetter air, and stronger convection. Moreover, two wave trains that originated from the tropical western Pacific were found to extend to the YRB and MDRB. The interaction between the wave train's interphase dynamics and water vapor transport disturbance results in the ascent conditions and enhanced water vapor transport, which leads to the synchronous occurrence of DPEs in the YRB and MDRB on an interannual scale.  相似文献   

20.
The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by CMA and Simple Ocean Data Assimilation (SODA). The results show that the tropical cyclone frequencies from June to October show concentrated geographic distribution, for they mainly distribute over the SCS area from 15 - 20 °N. The characteristics present significant interdecadal changes. The impact of oceanic factors on the tropical cyclone frequencies in the SCS area is mainly realized by La Ni(n)a and La Ni(n)a-like events before 1975 but mainly by El Ni(n)o and El Nifo-like events after 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号