首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
北京冬季城市边界层结构形成机制的初步数值研究   总被引:7,自引:1,他引:6  
利用耦合了城市冠层参数化方案的MM5模式对2001年冬季北京地区一次典型的城市边界层过程进行成功模拟的基础上,对北京城市化作用、周边地形以及城市化进程发展对城市边界层结构的影响等问题进行了一系列的数值模拟试验。城市化作用的因子分离试验发现,城市化的总体作用即城市下垫面结构对大气热力及动力的综合影响导致了北京冬季城市边界层结构主要特征的形成。此外,揭示了城市结构的不同影响因子———动力因子、热力因子和热动力因子间的相互作用在北京冬季城市边界层结构形成和演变过程中的不同作用。在夜间,城市结构的动力因子对于城市边界层主要特征如市区悬浮逆温、近地层中小的风速及较强的湍流动能等的形成起着主导作用;在白天,城市结构的热力因子则成为影响市区混合层强度以及湍流运动特征等边界层结构的主导因素;热、动力因子间的相互作用对城市边界层结构的形成和演变也有着重要作用,但其影响特征比较复杂。北京周边地形作用的敏感性试验的结果表明,北京周边的特殊地形条件对城市边界层热力结构特征如悬浮逆温层及城市热岛等的结构及分布特征的形成也有着明显的影响,使其具有特殊的局地化特征,同时,它也是北京地区近地层主要气流特征的强迫源。不同城市化程度的敏感性试验结果揭示,随着北京城市建筑高度和密度的增加,市区风速将减小、湍流动能将加强,夜间城市悬浮逆温层底的高度会有所提高,城市热岛的强度也将加强,并可能在白天出现比较明显的城市热岛效应。  相似文献   

2.
Based on some advanced urban parameterization schemes for mesoscale model,a new urban canopy parameterization (UCP) for MM5 is developed.The UCP takes into account the impacts of urban infrastructure and anthropogenic activity on the dynamic,thermal structures of urban surface layer and the urban surface energy budget in a more rational way according to conformation of MMS.The UCP is implemented in MM5 and validated by IOP data in 2001 winter BECAPEX and automatic meteorological station data in Beijing area.The results illustrate that UCP versus traditional urban parameterization in MM5,it can make MM5 reproduce main characteristics of winter UBL in Beijing,which include urban heat island and its diurnal evolvement,nocturnal elavated inversion in downtown area,and some dynamic stuctures such as TKE peak at the top of urban canopy,lower wind speed in urban surface layer and so on.  相似文献   

3.
MM5模式中城市冠层参数化方案的设计及其数值试验   总被引:15,自引:5,他引:15  
文中在综合国外一些较先进的中尺度模式城市作用参数化方案的基础上 ,从城市下垫面结构对城市边界层大气作用的物理机制及实际应用两方面出发 ,对城市下垫面结构和人为活动等因素对边界层结构的影响及中尺度模式中城市化作用的合理体现等问题进行了较全面的考虑 ,改进和设计出能够较全面、细致地描述城市结构对大气边界层动力、热力结构的影响 ,且适合中尺度模式结构特点的城市冠层参数化方案 (UCP) ,并实现了其与MM5模式的耦合。进行了耦合后的UCP方案及采用原城市作用方案的MM5模式对BECAPEX试验期间北京地区气象条件多重嵌套细尺度进行了模拟试验 ,并与观测结果对比 ,结果表明 :相比于MM 5模式中原有表示城市作用的参数化方案来讲 ,设计的UCP方案在很大程度上提高了MM 5模式对城市边界层热力和动力结构的模拟能力。  相似文献   

4.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

5.
By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, a physical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.  相似文献   

6.
城乡过渡地带低空温度平流和边界层特征的观测分析   总被引:4,自引:0,他引:4  
利用兰州河谷盆地城乡过渡区边界层观测资料,分析了该地区的温度平流和边界层特征。分析表明:(1)夜间热岛环流明显,白天则较弱;(2)夜间200m高度以下有较强的冷平流,在250~400m高度有较弱的暖平流,冷暖温度平流对测点上空边界层温度和层结变化有显著影响;(3)由声雷达确定的夜间边界层高度对应于Ri<1.0的高度,在这一高度范围内存在逆位温和强的风切变。本地区下垫面和复杂的地形导致夜间边界层高度随时间周期性地升高和降低,变化周期约3h。  相似文献   

7.
A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer, especially over heterogeneous terrain. In the present study, turbulence intensity and turbulent kinetic energy (TKE) parameters are analyzed for different conditions with respect to stability, wind direction and wind speed over a valley region of the Loess Plateau of China during December 2003 and January 2004. The purpose of the study is to examine whether the observed turbulence intensity and TKE parameters satisfy Monin-Obukhov similarity theory (MOST), and analyze the wind shear effect on, and thermal buoyancy function of, the TKE, despite the terrain heterogeneity. The results demonstrate that the normalized intensity of turbulence follows MOST for all stability in the horizontal and vertical directions, as well as the normalized TKE in the horizontal direction. The shear effect of the wind speed in the Loess Plateau region is strong in winter and could enhance turbulence for all stability conditions. During daytime, the buoyancy and shear effect together constitute the generation of TKE under unstable conditions. At night, the contribution of buoyancy to TKE is relatively small, and mechanical shearing is the main production form of turbulence.  相似文献   

8.
An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-to-width ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.  相似文献   

9.
The UBL/CLU (urban boundary layer/couche limite urbaine) observation and modelling campaign is a side-project of the regional photochemistry campaign ESCOMPTE. UBL/CLU focuses on the dynamics and thermodynamics of the urban boundary layer of Marseille, on the Mediterranean coast of France. The objective of UBL/CLU is to document the four-dimensional structure of the urban boundary layer and its relation to the heat and moisture exchanges between the urban canopy and the atmosphere during periods of low wind conditions, from June 4 to July 16, 2001. The project took advantage of the comprehensive observational set-up of the ESCOMPTE campaign over the Berre–Marseille area, especially the ground-based remote sensing, airborne measurements, and the intensive documentation of the regional meteorology. Additional instrumentation was installed as part of UBL/CLU. Analysis objectives focus on (i) validation of several energy balance computational schemes such as LUMPS, TEB and SM2-U, (ii) ground truth and urban canopy signatures suitable for the estimation of urban albedos and aerodynamic surface temperatures from satellite data, (iii) high resolution mapping of urban land cover, land-use and aerodynamic parameters used in UBL models, and (iv) testing the ability of high resolution atmospheric models to simulate the structure of the UBL during land and sea breezes, and the related transport and diffusion of pollutants over different districts of the city. This paper presents initial results from such analyses and details of the overall experimental set-up.  相似文献   

10.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

11.
The vegetated urban canopy model (VUCM) is implemented in a meteorological model, the Regional Atmospheric Modeling System (RAMS), for urban atmospheric modeling. The VUCM includes various urban physical processes such as in-canyon radiative transfer, turbulent energy exchanges, substrate heat conduction, and in-canyon momentum drag. The coupled model RAMS/VUCM is evaluated and then used to examine its impacts on the dynamic and thermodynamic structure of the urban boundary layer (UBL) in the Seoul metropolitan area. The spatial pattern of the nocturnal urban heat island (UHI) in Seoul is quite well simulated by the RAMS/VUCM. A statistical evaluation of 2-m air temperature reveals a significant improvement in model performance, especially in the nighttime. The RAMS/VUCM simulates the diurnal variations of surface energy balance fluxes realistically. This contributes to a reasonable UBL formation. A weakly unstable UBL is formed in the nighttime with UBL heights of about 100–200 m. When urban surfaces are represented in the RAMS using a land surface model of the Land Ecosystem-Atmosphere Feedback (LEAF), the RAMS/LEAF produces strong cold biases and thus fails to simulate UHI formation. This is due to the poor representation or absence of important urban physical processes in the RAMS/LEAF. This study implies that urban physical processes should be included in numerical models in order to reasonably simulate meteorology and air quality in urban areas and that the VUCM is one of the promising urban canopy models.  相似文献   

12.
桑建国 《气象学报》1985,43(4):458-468
本文采用二维数值模式模拟了一个坡地上夜间边界层的发展过程。所得到的结果与1974—1976年在北京北部山区得到的观测资料做了比较。模拟出的夜间辐射逆温层的厚度和形状以及下坡风的廊线都与观测事实大致相符。模式进一步改进后似可做为解决中、小尺度复杂地形上夜间边界层演变的工具。  相似文献   

13.
北京春季城市热岛特征及强热岛影响因子   总被引:11,自引:0,他引:11  
应用北京地区地面气象观测台1990-2004年4月的气温资料,分析了近15a北京春季城市热岛特征,结果表明:春季夜间城市热岛要强于白天。还分析了春季一个强热岛形成和减弱消失过程的气象影响因子,结果表明:北京春季夜间特定条件下存在强热岛,强热岛中心在白家庄、天安门、公主坟连线的主城区;白天强热岛会减弱消失。强热岛在夜间形成的原因是日落后郊区地面大气降温速率和幅度远大于城区地面大气。白天有日照的晴夜北京城、郊地面风场很弱(≤1.0m/s),多个测站甚至出现静风,同时城区垂直方向上15m高度以下持续存在很弱(≤1.5m/s)的风场,城区320m高度以下大气持续存在强逆温,这些因素共同促使春季强热岛的形成和维持。强热岛在白天减弱消失的原因是日出后太阳辐射的加热作用引起郊区地面大气升温速率和幅度大于城区地面大气,同时城区大气稳定度减弱、城区大气逆温消失、城郊地面风速增加。  相似文献   

14.
An urban canopy-layer climate model   总被引:1,自引:0,他引:1  
Summary This paper outlines a computer simulation model designed to assess the thermal characteristics of the urban canopy layer (UCL). In contrast to other UCL models, the layer simulated here includes both closed volumes (buildings) and open volumes (canyons). The purpose of the model is to allow the comparison of the climate impacts of different building group configurations. Traditional boundary-layer theory is applied to the surface urban boundary layer (UBL) which lies above the UCL and the derived relations are used to parameterize exchanges of momentum and heat across the UBL/UCL interface. The exterior energy budgets of the roof, walls and floor of the canopy are solved using an equilibrium surface temperature method. The open canopy and interior building air temperatures are found which are in agreement with the surface exchanges. Using measured data for Los Angeles in June, the output of the model is examined. The results show some agreement with measurement studies and suggest that the density of structures can have a substantial impact on UCL/UBL interaction.With 6 Figures  相似文献   

15.
This study analyses the atmospheric boundary layer over the Bilbao metropolitan area during summer (13–18 Jul 2009) and winter (20–29 Jan 2010) episodes using the Environment–High Resolution Limited Area Model (Enviro-HIRLAM) coupled with the building effect parameterisation (BEP). The main objectives of this study are: to evaluate the performance of the model to simulate the land–sea breezes over this complex terrain; to assess the simulations with the integration of an urban parameterisation in Enviro-HIRLAM and finally; and to analyse the urban–atmosphere interactions. Even if the hydrostraticity of the model is a limitation to simulate atmospheric flows over complex terrain, sensibility tests demonstrate that 2.4 km is the optimal horizontal resolution over Bilbao that allows at the same time: to obtain satisfactory reproducibility of the large-scale processes and to explore the urban effects at local scale. During the summer episode, a typical regime of diurnal sea breeze from the NW-N-NE direction and nocturnal valley breezes from the SE direction are observed over Bilbao. The urban heat island (UHI) phenomenon is developed in the city centre expanding to the suburbs from 22 to 10 local time (LT), covering an area of 130 km2. The maximum UHI intensity, 1 °C, is reached at the end of the night (5 LT), and it is advected 12 km towards the sea by the land breezes. The urban boundary layer (UBL) height amplitude varies from 100 (night time) to 1,360 m (at 14 LT). During the winter episode, the land breeze dominates the atmospheric diffusion during the day and night time. The maximum UHI intensity, 1.7 °C, is observed at 01 LT. It is spread and remained over the city covering an area of 160 km2, with a vertical extension of 33 m. The UBL reaches 780 m height at 16 LT the following day.  相似文献   

16.
北京地区夏季边界层结构日变化的高分辨模拟对比   总被引:14,自引:4,他引:14       下载免费PDF全文
使用WRF中尺度数值模式, 分别选用两种不同的边界层参数化方案 (MYJ, YSU) 和3种陆面参数化方案 (SLAB, Noah, RUC), 对2004年7月1日08:00—7月4日20:00 (北京时) 北京地区夏季边界层结构进行1 km的高分辨模拟。对比分析了近地面层风场、温度场以及边界层的日变化特征, 结果发现:WRF模式基本模拟出了北京夏季边界层的日变化特征; 在边界层方案中, MYJ方案描述的边界层结构较YSU方案合理; Noah陆面模式较好地反映了城市的热岛效应; 无降水时, 风速及边界层高度对于陆面过程不敏感, 而降水发生后, 陆面过程对于边界层结构的影响增大; 各方案模拟的城区风速明显偏大, 这是因为没有充分考虑城市建筑物的阻力作用。  相似文献   

17.
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.  相似文献   

18.
Temperature inversions are frequently observed in mountainous urban areas and can cause severe air pollution problems especially in wintertime. This study investigates wintertime winds in and around the Ulaanbaatar, the capital of Mongolia, metropolitan area in the presence of a temperature inversion using the Weather Research and Forecasting (WRF) model coupled with the Seoul National University Urban Canopy Model (SNUUCM). Ulaanbaatar is located in complex terrain and in a nearly east-west-oriented valley. A wintertime scenario with clear skies, weak synoptic winds, and a temperature inversion under the influence of a Siberian high-pressure system is selected. Local winds are weak in the presence of the temperature inversion. In the daytime, weak mountain upslope winds develop, up-valley winds appear to be stronger in the urban area than in the surrounding areas, and channeling winds are produced in the main valley. The bottom of the temperature inversion layer rises up in the urban area, and winds below the bottom of the temperature inversion layer strengthen. In the nighttime, mountain downslope winds and down-valley winds develop. Urban effects in the presence of the temperature inversion are examined by comparing the results of simulations with and without the city. It is shown that in the daytime the urban area acts to elevate the bottom of the temperature inversion layer and weaken the strength of the temperature inversion layer. Winds east of the city weaken in the afternoon and down-valley winds develop later in the simulation with the city.  相似文献   

19.
A numerical case study with a second-order turbulence closure model is proposed to study the role of urban canopy layer (UCL) for the formation of the nocturnal urban boundary layer (UBL). The turbulent diffusion coefficient was determined from an algebraic stress model. The concept of urban building surface area density is proposed to represent the UCL. Calculated results were also compared with field observation data. The height of the elevated inversion above an urban center was simulated and found to be approximately twice the average building height. The turbulent kinetic energy k, energy dissipation rate , and turbulence intensities u 2 and w 2 increase rapidly at the upwind edge of the urban area. The Reynolds stress uw displayed a nearly uniform profile inside the UBL, and the vertical sensible heat flux w had a negative value at the inversion base height. This indicates that the downward transport of sensible heat from the inversion base may play an important role in the formation of the nocturnal UBL.  相似文献   

20.
太阳能光伏屋顶的安装在一定程度上能缓解城市化带来的能源危机和城市热环境的破坏。将太阳能板的传热模型引入WRF模式的多层城市冠层方案中,选取了2017年7月21—27日一次典型的高温热浪天气过程,在线模拟太阳能屋顶两种安装形式(贴覆式和支架式)对城市热环境及能量平衡的影响。结果表明:(1)贴覆式太阳能屋顶可使白天2 m气温最多降低0.29°C,降温效果优于支架式屋顶,但夜间温度下降较小。支架式屋顶白天最大降温0.23°C,夜间降温效果明显,与普通屋顶相比,温度最多降低了0.60°C。(2)太阳能屋顶白天确实可以起到降温效果,抑制白天边界层的发展高度,降低边界层的厚度。(3)太阳能屋顶除了对城市气象的影响外,最重要的是它对能源的贡献。从结果来看,太阳能电池板产生的电能可以满足商业区54.5%的空调消耗。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号