首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   

2.
Two anomalous, gray, silty clay beds are present in ODP cores collected from Saanich Inlet, Vancouver Island, British Columbia, Canada. The beds, which date to about 10,500 14C yr BP (11,000 calendar years BP), contain Tertiary pollen derived from sedimentary rocks found only in the Fraser Lowland, on the mainland of British Columbia and Washington just east of the Strait of Georgia. Abundant illite-muscovite in the sediments supports a Fraser Lowland provenance.The clay beds are probably distal deposits of huge floods that swept through the Fraser Lowland at the end of the Pleistocene. Muddy overflow plumes from these floods crossed the Strait of Georgia and entered Saanich Inlet, where the sediment settled from suspension and blanketed diatom-rich mud on the fiord floor. The likely source of the floods is Late Pleistocene, ice-dammed lakes in the Fraser and Thompson valleys, which are known to have drained at about the time the floods occurred.  相似文献   

3.
The rhyolitic Lake Tapps tephra was deposited about 1.0 myr ago, shortly after culmination of the early phase of the Salmon Springs Glaciation in the Puget Lowland. It is contained within sediments that were deposited in ponds or lakes in front of the reteating glacier. An herb-dominated tundra existed in the southern Puget Lowland at that time. Lake Tapps tephra is most likely the product of an eruption that in part was phreatomagmatic. It forms an early Pleistocene stratigraphic marker across the southern sector of the Puget Lowland and provides a link between Puget lobe sediments of the Cordilleran Ice Sheet and sediments deposited by Olympic alpine glaciers.  相似文献   

4.
Previous studies on the deglaciation of the Appalachians of southern Québec reconstructed only the most extensive ice-dammed lakes and the most stable glaciolacustrine water levels. They only used the best developed shoreline features, and thus were not able to reconstruct small or short-lived ice-dammed lakes, both being characterized by a weak development of their features. We propose a methodology to reconstruct glacial lakes which follows three main steps: (1) the mapping of shoreline features, generally the best developed ones, as in previous studies; (2) the delineation of the former shoreline for each water level, by also considering the less well-developed shoreline features which were found during field surveys designed as a function of the presumed shoreline position; and (3) the mapping of the maximum extension of the water plane, which includes the location of the former ice dam and of the former glacial lake spillway. In southern Québec, small ice-dammed lakes were numerous and important because they shaped the geomorphology of the region during the deglaciation. They are thus among the key components of a deglaciation model for this area.  相似文献   

5.
The modern Severnaya Dvina and Mezen river systems in the Arkhangelsk region, NW Russia, are located within extensive palaeovalley systems. The palaeovalleys form depressions in bedrock and have controlled the drainage systems in the area at least since the Last Interglacial. Vertically stacked marine to fluvial sediments reflect deposition during fluctuating climate and sea levels.A compilation of lithostratigraphical data collected during the last decade has been coupled with bedrock topography and geomorphology from satellite images in order to describe the valley fill architecture for the two valley systems. Each system has been divided into a number of depositional units (storeys) separated by incision/non-deposition and used to investigate the timing of aggradational versus incisional phases. Time constraints for each phase are provided by optically stimulated luminescence (OSL) ages, and aggradation and incision are linked to independent records of climate and sea level change.The pattern of aggradation and erosion is regional and primarily driven by episodes of increasing and decreasing sediment supply. Aggradation is correlated to times of deglaciation with high sediment supply from the ice margin, release of sediment from ice-dammed lakes and low vegetation and degradation of permafrost on the flood plain. Incision is related to cold intervals with low sediment supply, delayed incision due to isostatic uplift and drainage of ice-dammed lakes. Relative sea level change controls the distribution of marine deposits, which show significant regional variations due to variable isostatic response across the region. Sea level change plays a limited role for fluvial aggradation/incision in the study area.  相似文献   

6.
Twenty-two new radiocarbon ages from Skagit valley provide a detailed chronology of alpine glaciation during the Evans Creek stade of the Fraser Glaciation (early marine oxygen isotope stage (MIS) 2) in the Cascade Range, Washington State. Sediments at sites near Concrete, Washington, record two advances of the Baker valley glacier between ca. 30.3 and 19.5 cal ka BP, with an intervening period of glacier recession about 24.9 cal ka BP. The Baker valley glacier dammed lower Skagit valley, creating glacial Lake Concrete, which discharged around the ice dam along Finney Creek, or south into the Sauk valley. Sediments along the shores of Ross Lake in upper Skagit valley accumulated in glacial Lake Skymo after ca. 28.7 cal ka BP behind a glacier flowing out of Big Beaver valley. Horizontally laminated silt and bedded sand and gravel up to 20 m thick record as much as 8000 yr of deposition in these glacially dammed lakes. The data indicate that alpine glaciers in Skagit valley were far less extensive than previously thought. Alpine glaciers remained in advanced positions for much of the Evans Creek stade, which may have ended as early as 20.8 cal ka BP.  相似文献   

7.
A synthesis of previous work and new data on the stratigraphy of high terraces of the Ohio and Monongahela Rivers upstream from Parkersburg, West Virginia, indicates a correspondence between terrace histories in the ancient Teays and Pittsburgh drainage basins. Four terraces are identified in each. Sediments of the lower three alluvial and slackwater terraces, correlated with Illinoian, early Wisconsin, and late Wisconsin glacial deposits, have been traced along the modern Ohio River through the former divide between the Teays and Pittsburgh basins. Sediments in the fourth terrace, the highest well-defined terrace in each basin, were deposited in two ice-dammed lakes, separated by a divide near New Martinsville, West Virginia. Some deposits of the highest slackwater terrace in both the Teays and Pittsburgh basins have reversed remanent magnetic polarity. This, and the stratigraphic succession in the two basins, suggests that both were ponded during the same glaciation. Reversed polarity in these terrace sediments restricts the age of the first ice-damming event for which stratigraphic evidence is well-preserved to a pre-Illinoian, early Pleistocene glaciation prior to 788,000 yr ago. In contrast, slackwater sediments in the Monongahela River valley, upstream from an outwash gravel dam at the Allegheny-Monongahela confluence, have normal remanent magnetic polarity, corroborating correlation with an Illinoian ponding event.  相似文献   

8.
Different types of ice-dammed lakes occur along the Swedish part of the Scandinavian mountain range. Traces of wide open lakes are found mainly in the north and south. In the main part of the area the ice-dammed basins were more or less filled by dead ice. The ice-lake distribution indicates that the ice recession in the north and south proceeded towards active centres east of the mountains. In the middle part the corresponding centres were gradually more controlled by the mountain relief.  相似文献   

9.
During deglaciation, several valleys of the Appalachians of southern Québec were affected by the pounding of ice-dammed lakes. More than 300 water planes were reconstructed in the southeastern part of the region with the methodology presented elsewhere in this volume (Quat. Int. (2002) this volume). Their characteristics during deglaciation gradually changed, following four main steps: (1) ice-dammed ponds; (2) ice-dammed lakelets; (3) intermediate lakes; and (4) large ice-dammed lake. These various lake types differed by the size, the shape, the position of the spillway and the depth of the former ice-dammed lake as well as by the relative duration and by the stability degree of each lake level. In this study, a relative duration of each reconstructed lake level was determined using the distance covered by the retreating ice margin during the former existence of the water body. The stability of the water level also explained the difference in the degree of development of shoreline features among water bodies with relatively similar sizes.  相似文献   

10.
Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches.  相似文献   

11.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

12.
The concepts of the role of catastrophic breakthroughs of ice- and rock-dammed and thermokarst lakes in West Siberia in the Late Neopleistocene–Holocene are systematized. The Late Neopleistocene glacial maximum in the mountains and on the plain was obviously at the same time, at 90–60 ka. It has been revealed that the basal part of the Late Quaternary cyclic three-stage upper Ob' River terrace is formed by catafluvial sediments including boulder-gravels, which descend from the valley edge beneath the water line. The Early Karginian (Kharsoimian) marine layers are spatially related to the valleys of the rushed waters of ice-dammed Lake Ermakovskoe. Substantiation is given to the concept of catastrophic flows that arrived at the plain from the Pamir and Tien Shan mountains in the Holocene Optimum and carried the Aral microfauna through the Turgai trough into the Lake Chany area. Floods resulted from the breakthrough of thermokarst lakes in the north of the West Siberian plain were typical in Karginian and Holocene time. The breakthroughs of moraine-dammed basins in the Altai Mountains took place mainly in Karginian time, whereas the breakthroughs of rock-dammed lakes, in the Sartan and Holocene epochs.  相似文献   

13.
The Lamayuru lacustrine strata in Ladakh typify many of the carbonate-rich Pleistocene alpine lakes found in the semiarid environment of the northern Himalaya. Created by a 200-m-thick landslide, the lake was in existence by at least 35,000 yr ago, and may have persisted until 500–1000 yr ago. Represented in the center by thin turbidites and laminated muds, the lacustrine sedimentation along the lake margins and low-relief deltas characteristically displays a marked contrast between (1) clastic lenses representing rapid, sporadic, matrix-poor debris flows and periglacial inputs from the alpine slopes and (2) abundant, diverse, shallow-water, biologically dominated carbonate strata, among which organism-rich, chalky beds and oncolithic and encrusted stem-rich strata predominate. Resemblances of the Lamayuru lacustrine strata and their setting to those of former lakes throughout areas north of the Greater Himalayan crest suggest that the alpine, semi-arid environment would favor diversified, spacially restricted carbonate sedimentation punctuated by occasional clastic influxes. Such a depositional regime contrasts strongly with that found immediately south of the Himalayan crest where more humid conditions promote a more continuous clastic influx into intramontane lakes.  相似文献   

14.
Sediment cores from lakes Kormovoye and Oshkoty in the glaciated region of the Pechora Lowland, northern Russia, reveal sediment gravity flow deposits overlain by lacustrine mud and gyttja. The sediments were deposited mainly during melting of buried glacier ice beneath the lakes. In Lake Kormovoye, differential melting of dead ice caused the lake bottom to subside at different places at different times, resulting in sedimentation and erosion occurring only some few metres apart and at shifting locations, as further melting caused inversion of the lake bottom. Basal radiocarbon dates from the two lakes, ranging between 13 and 9 ka, match with basal dates from other lakes in the Pechora Lowland as well as melting of ice‐wedges. This indicates that buried glacier ice has survived for ca. 80 000 years from the last glaciation of this area at 90 ka until about 13 ka when a warmer climate caused melting of permafrost and buried glacier ice, forming numerous lakes and a fresh‐looking glacial landscape. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.  相似文献   

16.
The complexity of the age dating of the Pleistocene ice-dammed paleolakes in the Altai Mountains is a reason why geologists consider the Early Paleolithic archaeological sites as an independent age marker for dating geological objects. However, in order to use these sites for paleogeographic reconstructions, their locations, the character of stratification, and the age of stone artifacts need to be comprehensively studied. We investigate 20 Late Paleolithic archaeological sites discovered in the Chuya depression of the Russian Altai (Altai Mountains) with the aim of their possible use for reconstructions of the period of development of the Kurai–Chuya glacio-limnosystem in the Late Neopleistocene. The results of our investigation show that it is improper to use the Paleolithic archaeological sites for the dating of the existence period and the draining time of ice-dammed lakes of the Chuya Depression in the modern period of their study owing to a lack of quantitative age estimates, a wide age range of possible existence of these sites, possible redeposition of the majority of artifacts, and their surface occurrence. It is established that all stratified sites where cultural layers are expected to be dated in the future lie above the uppermost and well-expressed paleolake level (2100 m a.s.l.). Accordingly, there are no grounds to determine the existence time of shallower paleolakes. Since the whole stone material collected below the level of 2100 m a.s.l. is represented by surface finds, it is problematic to use these artifacts for absolute geochronology. The Late Paleolithic Bigdon and Chechketerek sites are of great interest for paleogeographic reconstructions of ice-dammed lakes. The use of iceberg rafting products as cores is evidence that these sites appeared after the draining of a paleolake (2000 m a.s.l.). At this time, the location of these archaeological sites on the slope of the Chuya Depression allows one to assume the existence of a large lake as deep as 250 m synchronously with the above paleolake or later. The location of the lowermost archaeological sites is evidence that a paleolake could have existed at an altitude below 1770 m a.s.l. in the Late Neopleistocene–Early Holocene. The absolute geochronology of the archaeological sites (cultural layers in multilayered sites, split surfaces on dropstones, etc.) can be useful for further reconstructions of the existence time, depths, and a number of ice-dammed lakes in the Kurai–Chuya system of depressions.  相似文献   

17.
Traces of ice-dammed lakes are found along the southern part of the Saariselkä mountain range. Various shore marks, outlet channels and fine-grained sediments are indications of open water. The shallow basins were more or less filled by dead ice. At the beginning of deglaciation the meltwaters discharged over the mountain ridge to the north. As the ice margin receded toward the southwest new outlets were opened and the meltwaters discharged to the east and southeast. The ice-dammed lakes existed and the deglaciation took place during the period 9,500-9,300 B.P. The annual rate of retreat of the ice margin averaged 130–170 m per year.  相似文献   

18.
On the basis of opinions held by leading Soviet geologists the author, in a paper of 1957, concluded that the immigration started from an ice-dammed lake in the valley of R. Onega, emptying into the White Sea, from which the animals had been sluiced up in front of the advancing ice-sheet. Recent geological work suggests that the Würm ice-cap of northern Europe (and adjacent Arctic regions) extended in northern Russia as far eastwards as the Urals, creating a continuous network of ice-dammed waters along the ice-front. Consequently, the relicts may have come from considerably more eastern regions than the Onega Ice Lake. The presence of relicts in lakes of the Kola Peninsula is also discussed. It is shown that these once enigmatic relict localities can be explained in the light of recent geological research, which suggests that the White Sea basin experienced a freshwater phase during the Würm deglaciation, thus allowing the relicts, which do not tolerate higher salinities, to reach even the Kola Peninsula.  相似文献   

19.
Several sections have been studied to understand the distribution and interrelation of basic genetic types of Quaternary deposits in the Uimon basin and adjacent area. The OSL date of 101 ± 10 ka from the glaciolacustrine terrace on the northeastern rim of the basin corresponds to the cool substage of MIS 5. The glaciolacustrine sediments of the northern rim are covered with widespread diamictic flows of the outburst draining of the ice-dammed lake. The diamicts are overlain by a subaerial complex of loesses and three fossil soils. From the OSL loess dates in the range of 43 to 49 ka we infer that the complex formed from the early MIS 3 through the Holocene. This is also supported by radiocarbon dates from alluvial deposits incised into the glaciolacustrine terrace and into megaflood sediments of the final draining of the last paleolake. The OSL dates in the range of 77 to 89 ka from alluvial sediments indicate that postglacial downcutting of the present-day Katun’ valley probably started just after MIS 5. The discrepancy between the beryllium dates from dropstones and Holocene TL-dates of the Katun’ valley floods ranging from 23 to 6 ka can be explained if the younger floods are related to the draining of moraine- and rock slide dammed rather than ice-dammed lakes. The younger floods, though being less voluminous than the glacial megafloods, were capable of producing giant ripple marks.  相似文献   

20.
ABSTRACT An extensive seismic reflection survey has been used to gain further knowledge of Holocene stratigraphy and depositional history in the Narragansett Bay System (NBS). The early Holocene stream-dissected surface beneath the NBS is interpreted as having been flooded by the Holocene sea in a manner suggested by Oldale & O'Hara's (1980) sea-level-rise curve. The sea initially is believed to have penetrated the pre-NBS East Passage trunk valley about 9000 yr BP and subsequently spread landward via the trunk valley and its branches. The Holocene sediments display stratigraphic relationships that differ spatially. At passage mouths, the basal unconformity is inferred to be covered over with some 3 m of paralic and 5 m of marine sands and silts separated, by a transgressive unconformity. In contrast the interior sequences reveal (a) a valley section up to more than 15 m thick in which the regressional unconformity is overlain by probable lower fluvial and/or estuarine sand-silt facies that commonly grades upward to an estuarine silt-clay facies and (b) an interfluve section in which a basal transgressive unconformity is blanketed by an estuarine nearshore sand-silt facies that locally may change upward to a silt-clay facies. Primarily Holocene silt-clay accretion, produced by sedimentation processes associated with net non-tidal estuarine circulation, infilled the evolving NBS. Depositional bodies, lenticular in shape and comprised of 12 m or more of sediment, developed in lowlands near Gould Island (?9000 yr BP), in Upper Narragansett Bay (?7500 yr BP), around Hope Island (?7500 yr BP) and in Mt Hope Bay (?6250 yr BP) with an average minimal sedimentation rate of 1.6–2.2 mm yr-1. Silt-clay deposition, commonly gas-bearing, has buried the basal relief in most of the NBS upper and middle portions except for middle East Passage. A comparison of NBS sedimentation with that of Chesapeake, Delaware and Hudson Estuaries shows that the estuaries to the south have accumulated more sediment over a slightly longer period yet, with the exception of the higher rate in the Hudson Estuary, the sedimentation rates appear to be similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号