首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fuzzy logic controller for ship path control in restricted waters is developed and evaluated. The controller uses inputs of heading, yaw rate, and lateral offset from the nominal track to produce a commanded rudder angle. Input variable fuzzification, fuzzy associative memory rules, and output set defuzzification are described. Two maneuvering situations are evaluated: track keeping along a specified path where linearized regulator control is valid; and larger maneuvers onto a specified path where nonlinear modeling and control are required. For the track keeping assessment, the controller is benchmarked against a conventional linear quadratic Gaussian (LQG) optimal controller and Kalman filter control system. The Kalman filter is used to produce the input state variable estimates for the fuzzy controller as well. An initial startup transient and regulator control performance with an external hydrodynamic disturbance are evaluated using linear model simulations of a crude oil tanker. A fully nonlinear maneuvering model for a smaller product tanker is used to assess the larger maneuvers  相似文献   

2.
The large roll motion of ships sailing in the seaway is undesirable because it may lead to the seasickness of crew and unsafety of vessels and cargoes, thus it needs to be reduced. The aim of this study is to design a rudder roll stabilization system based on Radial Basis Function Neural Network (RBFNN) control algorithm for ship advancing in the seaway only through rudder actions. In the proposed stabilization system, the course keeping controller and the roll damping controller were accomplished by utilizing modified Unscented Kalman Filter (UKF) training algorithm, and implemented in parallel to maintain the orientation and reduce roll motion simultaneously. The nonlinear mathematical model, which includes manoeuvring characteristics and wave disturbances, was adopted to analyse ship’s responses. Various sailing states and the external wave disturbances were considered to validate the performance and robustness of the proposed roll stabilizer. The results indicate that the designed control system performs better than the Back Propagation (BP) neural networks based control system and conventional Proportional-Derivative (PD) based control system in terms of reducing roll motion for ship in waves.  相似文献   

3.
This paper presents a neural network (NN) controller for a fishing vessel rudder roll system. The aim of this study is to build a NN controller which uses rudder to regulate both the yaw and roll motion. The neural controller design is accomplished with using the classical back-propagation algorithm (CBA). Effectiveness of the proposed NN control scheme is compared with linear quadratic regulator (LQR) results by simulations carried out a fishing vessel rudder roll stabilizer system.  相似文献   

4.
In this paper, we present a mathematical model including seakeeping and maneuvering characteristics to analyze the roll reduction for a ship traveling with the stabilizer fin in random waves. The self-tuning PID controller based on the neural network theory is applied to adjust optimal stabilizer fin angles to reduce the ship roll motion in waves. Two multilayer neural networks, including the system identification neural network (NN1) and the parameter self-tuning neural network (NN2), are adopted in the study. The present control technique can save the time for searching the optimal PID gains in any sea states. The simulation results show that the present developed self-tuning PID control scheme based on the neural network theory is indeed quite practical and sufficient for the ship roll reduction in the realistic sea.  相似文献   

5.
In the paper, a hydrodynamic numerical model including wave effect is developed to simulate ship autopilot systems by using the time domain analysis. The PD controller and the sliding mode controller are adopted as the autopilot systems. The differences of simulation results between two controllers are analyzed by cost function composed of heading angle error and rudder deflection, either in calm water or in waves. The results in calm water show that both controllers are tracking well for the desired route with the similar cost function value by tuning the key design parameters. However, the course tracking ability of the controller using sliding mode in waves is generally better even the cost function value is similar.  相似文献   

6.
Equations of yaw, sway, roll and rudder motions are formulated to represent realistic maneuvering behavior of high-speed ships such as destroyers. Important coupling terms between yaw, sway, roll and rudder were included on the basis of recent captive model test results of a high-speed ship. A series of computer runs was made by using equations of yaw, sway, roll and rudder motions. Results indicate substantial coupling effects between yaw, roll, and rudder, which introduce changes in maneuvering characteristics and reduce course stability in high-speed operation. These effects together with relatively small GM (which is typical for certain high-speed ships) produce large rolling motions in a seaway as frequently observed in actual operations. Results of digital simulations and captive model tests clearly indicate the major contributing factors to such excessive rolling motions at sea.  相似文献   

7.
The traditional governing equations for sway–yaw maneuvering motion are a set of ordinary differential equations with constant coefficients. But, as is well known, integro–differential equations with impulse response functions are more strict governing equations that can handle the frequency dependence of hydrodynamic forces.In this paper, the two types of equation are compared and used to calculate the 10°–10° zig-zag maneuver in waves. Differences between the solutions are discussed.  相似文献   

8.
The very purpose of attaching fins to the hull is to reduce the roll motions of a ship. Roll minimization is a requisite for various operations in the seas. The presence of fin system provides enhanced state of stabilization especially when the vessel is performing a fast maneuvering amidst rough environmental disturbance. The fins in turn are activated by electro-hydraulic mechanism based on the in-built intelligence as per control theory like proportional–integral–derivative (PID) or fuzzy logic. As per this paper, fin system is activated using PID control algorithm. A frigate-type warship is considered for the demonstration purpose. Nonlinear roll motions are controlled using active fins. Lift characteristics of the fins in hydrodynamic flow were studied using CFD package fluent.Good amount of reduction in roll amplitude is achieved from various simulations in random sea. The approach can be used for any irregular sea conditions.  相似文献   

9.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

10.
This paper outlines a procedure for the derivation of the differential equations describing the free response of a heaving and pitching ship from its stationary response to random waves. The coupled heave–pitch motion of a ship in random seas is modelled as a multi-dimensional Markov process. The partial differential equation describing the transition probability density function, known as the Fokker-Planck equation, for this process is derived. The Fokker-Planck equation is used to derive the random decrement equations for the coupled heave–pitch motion. The parameters in these equations are then identified using a neural network approach. The method is validated using numerical simulations and experimental results. The experimental data was obtained using an icebreaker ship model heaving and pitching in random waves. It is shown that the method produces good results when the system is lightly damped. An extension for using this method to identify couple heave–pitch motion in realistic seas is suggested.  相似文献   

11.
A method to evaluate the use of actively controlled moving weights on board ships to reduce roll motion is developed. The weights can simulate in principle anti-roll-tank systems, or they can be considered a possible anti-roll device in their own right. The ship, the moving weight, and the control device are considered components of a single dynamic system. The full eight-degree-of-freedom set of coupled governing equations for the complete dynamic system is derived. And a three-degree-of-freedom non-linear approximation for the roll motion only (MOTSIM) is derived from these eight equations. The reduced set of equations is used to determine the influence of various parameters and to evaluate control strategies. A PID controller is developed to command the position of the weight and a servomechanism model is used to predict its actual position. Then, the moving-weight system is incorporated into LAMP (Large–Amplitude–Motion Program), a computer code that integrates the governing equations of the sea and the motion of the ship interactively and simultaneously and predicts the motion of the ship in the time domain. A comparison of the results from the two simulations shows that there is fairly good correlation between the simple and complex models, but the simple model is a little optimistic in predicting the effectiveness of the moving-weight system. The results predict that the moving-weight system can be an excellent roll-suppressing device when the moving weight is as small as 1% of the displacement of the ship and the maximum distance the weight moves is as small as 15% of the half-beam.  相似文献   

12.
波浪作用下缆船拖带系统非线性运动数值模拟   总被引:1,自引:0,他引:1  
朱军  李炜  程虹 《海洋工程》2006,24(3):56-62
基于船舶操纵性运动方程和拖缆的三维动力学运动方程,提出了被拖点位置匹配的方法,建立了拖船—拖缆—被拖船系统整体非线性拖带动力学模型。为了考察被拖船航向稳定性与横向稳性的关系以及波浪载荷作用的影响,被拖船采用水平面四自由度运动方程,并引入了波浪的作用力和力矩。拖船采用PD控制方法较真实地模拟了拖船航向改变的运动过程。对一个拖船—拖缆—被拖船系统(5 000 t的拖船和3 000 t的被拖船)在时域内进行了规则波浪作用下拖带运动的模拟,计算结果表明被拖带船舶在波浪中运动呈现运动稳定、不稳定和临界状态3种可能的特性。根据模拟计算结果,认为波浪中拖带航向稳定是被拖带船舶保持稳性的必要条件。  相似文献   

13.
K. D. Do  J. Pan  Z. P. Jiang   《Ocean Engineering》2003,30(17):2201-2225
This paper addresses an important problem in ship control application—the robust stabilization of underactuated ships on a linear course with comfort. Specifically, we develop a multivariable controller to stabilize ocean surface ships without a sway actuator on a linear course and to reduce roll and pitch simultaneously. The controller adapts to unknown parameters of the ship and constant environmental disturbances induced by wave, ocean current and wind. It is also robust to time-varying environmental disturbances, time-varying change in ship parameters and other motions of the ship such as surge and heave. The roll and pitch can be made arbitrarily small while the heading angle and sway are kept to be in reasonably small bounds. The controller development is based on Lyapunov’s direct method and backstepping technique. A Lipschitz continuous projection algorithm is used to update the estimate of the unknown parameters to avoid the parameters’ drift due to time-varying environmental disturbances. Simulations on a full-scale catamaran illustrate the effectiveness of our proposed controller.  相似文献   

14.
The use of wavelet transforms is explored to investigate the nonlinear dynamical characteristics of ship roll and coupled heave-roll motion. The harmonic character, double period character and chaotic character are observed via a time–frequency window of the wavelet transform. Typical wave parameters in different stability regions are considered. Features such as restoring rolling, divergence rolling, steady state and chaotic responses of ship roll are obtained as well. The investigation in this paper not only highlights the feasibility of using wavelet transforms in the analysis of nonlinear dynamic characteristics of ship rolling in waves, but also shows how it could enhance the analysis abilities.  相似文献   

15.
A global trajectory tracking controller is presented for underactuated AUVs with only surge force and yaw moment in the horizontal plane. A transformation is introduced to represent the tracking error system into a cascade form. The global and uniform asymptotic stabilization problem of the resulting cascade system is reduced to the stabilization problem of two subsystems by use of the cascade approach. For the stabilization of the subsystem involving the yaw moment, a control law is proposed based on the feedback linearization method. Another subsystem is stabilized by designing a fuzzy sliding mode controller which can offer a systematical means of constructing a set of shrinking-span and dilating-span membership functions. In order to demonstrate the practicability of the proposed controller, control constraints, parameter uncertainties, and external disturbances are considered according to practical situation of AUVs. Simulation results show very good tracking performance and robustness of the proposed control schemes.  相似文献   

16.
Active control of ship roll motion with proportional and derivative controller, linear quadratic regulator, generalized predictive control (GPC), and deadbeat predictive control, is studied by using a U-tube water tank. For the predictive control, system identification is applied to update the parameters of linear ship roll model with U-tube tank when the ship dynamics changes. Numerical simulations show that GPC has the best performance and the U-tube tank is effective in ship roll mitigation.  相似文献   

17.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

18.
Coastal disposal of waste water can be idealized as the problem of a jet under random waves. Understanding of this phenomenon is important for engineering design and environmental impact assessment. The present study aims to simulate such phenomenon by using a 3D numerical model based on the solution of the spatially filtered and σ-transformed Navier–Stokes equations with dynamic sub-grid scale model of turbulence. The numerical solution procedures are split into three steps: advection, diffusion and pressure propagation, and a Lagrange–Euler method is used to track the free surface. Cases of vertical jet in stagnant water, pure random waves and vertical jet in random waves are simulated with the same grid system for comparative study. Different methods of generating jet inflow turbulence have been tested and the method of jet azimuthal modes is found to be the optimum. The numerical results reproduce the distinct characteristics of jet in waves, including faster decay of centerline velocity, wider lateral spreading and the occurrence of wave tractive mechanism.  相似文献   

19.
Y. Kim  B.W. Nam  D.W. Kim  Y.S. Kim 《Ocean Engineering》2007,34(16):2176-2187
This study considers the coupling effects of ship motion and sloshing. The linear ship motion is solved using an impulse-response-function (IRF) method, while the nonlinear sloshing flow is simulated using a finite-difference method. The IRF method requires the frequency-domain solution prior to conversion to time domain, but the computational effort is much less than that of direct time-domain approaches. The developed scheme is verified by comparing the motion RAOs between the frequency-domain solution and the solution obtained by the IRF method. Furthermore, a soft-spring concept and linear roll damping are implemented to predict more realistic motions of surge, sway, yaw, and roll. For the simulation of sloshing flow in liquid tanks, a physics-based numerical approach adopted by Kim [2001. Numerical simulation of sloshing flows with impact load. Applied Ocean Research 23, 53–62] and Kim et al. [2004. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Applied Ocean Research 26, 213–226] is applied. In particular, the present method focuses on the simulation of the global motion of sloshing flow, ignoring some local phenomena. The sloshing-induced forces and moments are added to wave-excitation forces and moments, and then the corresponding body motion is obtained. The developed schemes are applied for two problems: the sway motion of a box-type barge with rectangular tanks and the roll motion of a modified S175 hull with rectangular anti-rolling tank. Motion RAOs are compared with existing results, showing fair agreement. It is found that the nonlinearity of sloshing flow is very important in coupling analysis. Due to the nonlinearity of sloshing flow, ship motion shows a strong sensitivity to wave slope.  相似文献   

20.
Attitude control systems for autonomous underwater vehicles are often implemented with separate controllers for pitch motion in the vertical plane and yaw motion in the horizontal plane. We propose a novel time-varying model for a streamlined autonomous underwater vehicle that explicitly displays the coupling between yaw and pitch motion due to nonzero roll angle and/or roll rate. The model facilitates the use of a multi-input multi-output H control design that is robust to yaw-pitch coupling. The efficacy of our approach is demonstrated with field trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号