首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 236 毫秒
1.
西准噶尔地区晚古生代岩浆活动剧烈,地壳的垂向和侧向增生显著,地壳生长和演化存在多阶段性。本文重点通过Sr-Nd-Pb同位素填图研究,发现西准噶尔地区εNd(t)值为2.29~8.75,(87Sr/86Sr)i值为0.697 397~0.708 336,(206Pb/204Pb)i值为17.4975~19.0352,整体表现为高正εNd(t)、低(87Sr/86Sr)i和年轻的地壳模式年龄特征,源区以古生代新生地壳为主,地幔贡献值整体大于50%,深部地壳几乎不存在古老的结晶基底,可以与区域构造地质、地球物理资料作较好匹配。区域晚古生代主要经历3个时期的造山阶段,分别对应造山带演化的第一阶段(中晚石炭世,岛弧为代表的侧向生长为主)、第二阶段早期(晚石炭世—早二叠世,后碰撞阶段的垂向生长为主)和第二阶段晚期(早二叠世—早三叠世,壳幔混源背景下的垂向生长),区域造山作用结束于早三叠世。  相似文献   

2.
松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征   总被引:22,自引:1,他引:21       下载免费PDF全文
松树沟蛇绿岩中镁铁质岩的Sm-Nd全岩等时年龄为1030±46Ma,∈Nd(t)=+5.7,模式年龄在1422-1271Ma之间,矿物的内部等时年龄为983±140Ma。全岩等时年龄为其形成上限,矿物内部等时年龄为其变质年龄,说明该蛇绿岩形成于中元古代中、晚期。镁铁质岩的∈Nd(t)在+4.2-+6.9之间,是DMM与EMI两个地幔端元的混合产物;206Pb/204Pb在18.06-18.66之间,207Pb/204Pb和208Pb/204Pb值较高,分别在15.55-15.60和37.59-38.38之间,207Pb/204Pb和208Pb/204Pb对206Pb/204Pb的关系表明,岩浆源于具DUPAL异常的源区,(207Pb/204Pb)i相对(208Pb/204Pb)i更偏离NHRL可能是变质流体作用的反映。∈Sr(t)值较高且变化大,可与蛇绿岩类比,87Sr/86Sr比值变化大,可能与海水蚀变作用有关。据此推测,松树沟蛇绿岩代表洋壳残片。  相似文献   

3.
红山子晚侏罗世早期火山盆地位于西拉木伦河-长春缝合带以南、康宝-围场-赤峰-开原断裂带以北的辽源地块,其中赋存铀钼矿床的流纹岩为肉红色流纹岩和灰白色流纹岩。为了查明流纹岩的物质来源和形成的构造背景,本文分析了流纹岩的主量元素、微量元素、稀土元素和Sr-Nd-Pb同位素组成。分析结果显示:流纹岩具有高SiO2、K2O和Fe2O3/FeO值,低Al2O3、CaO和MgO的特征,肉红色流纹岩比灰白色流纹岩的SiO2含量略低、(K2O+Na2O)含量高和Fe2O3/FeO值略高;肉红色流纹岩和灰白色流纹岩均有较高的稀土含量,明显富集轻稀土,显著亏损铕;高场强元素Nb、Ta、Zr、Hf、Ce、Y、Ga和大离子亲石元素Rb、Th、U的含量较高,但大离子亲石元素Ba、Sr的含量低且变化较大,具有A1型流纹岩、低Sr-Ba流纹岩和板内拉张构造流纹岩的微量元素特征;具有较小的(87Sr/86Sr)i、较高的εNdt)、较年轻的TDM2和较低的(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i,指示流纹岩是源于EMⅠ富集地幔的中元古代年轻下地壳部分熔融的产物,并在岩浆过程中经历了结晶分异。肉红色流纹岩和灰白色流纹岩的差异可能与年轻下地壳物质的成分差异有关。  相似文献   

4.
鄂东南地区程潮大型矽卡岩型铁矿区岩体成因探讨   总被引:2,自引:0,他引:2  
湖北程潮铁矿是鄂东南矿集区内最大的矽卡岩型铁矿床。为了系统研究矿区内不同侵入体的成因,对程潮矿区内不同时代的侵入体进行了矿物学、地球化学和Sr-Nd-Pb同位素研究。矿区内花岗岩、石英二长斑岩、闪长岩中的黑云母成分特征暗示它们均为壳幔物质混合成因的镁质黑云母;与成矿相关的花岗岩、石英二长斑岩中原生黑云母矿物学成分显示出原始岩浆具有高氧逸度的特征,高氧逸度为磁铁矿的形成提供了有利条件。岩石地球化学特征研究表明,不同类型的岩石都具有富钾和准铝质的特征,富集Rb、Ba、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、Ti等高场强元素。矿区岩石的(87Sr/86Sr)i值为0.705 0~0.709 1,εNd(t)值为-14.16~-6.95,206Pb/204Pb值为17.636~18.919,207Pb/204Pb值为15.451~15.613,208Pb/204Pb值为37.833~39.556。矿物学、地球化学、Sr-Nd-Pb同位素特征暗示矿区岩体为富集地幔发生部分熔融并同化混染了不同比例下地壳物质的产物,早期闪长岩((140±1) Ma)比晚期花岗岩和石英二长斑岩((128±1) Ma)的源区有更多的地幔成分,花岗岩和石英二长斑岩与闪长岩具有相近的锆石饱和温度(平均值分别为783、788、765℃)。  相似文献   

5.
大滩盆地位于华北克拉通北缘隆起带和沽源—红山子铀成矿带西南段,盆地内五里营铀矿点赋存在义县期(早白垩世晚期)二长斑岩中。二长斑岩全岩为高钾、富碱、低钛、贫铁,富集轻稀土元素和大离子亲石元素,无明显Eu负异常,具有碱性系列和钙碱性系列的特征,属典型的钾玄岩系列;[n(87Sr)/n(86Sr)]i为0.707290~0.707399(平均值为0.707343),[n(143Nd)/n(144Nd)]i为0.511849~0.511895(平均值为0.511876),εNd(t)值变化范围是-12.38~-11.49,[n(206Pb)/n(204Pb)]i为17.236~17.343(平均值17.296),[n(207Pb)/n(204Pb)]i为15.407~15.428(平均值为15.416),[n(<...  相似文献   

6.
为确定湘东北团山背金矿区辉绿岩脉的形成时代、岩浆源区特征和形成时的大地构造背景,对采自该区的辉绿岩样品进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学及Sr、Nd、Pb同位素分析。结果表明,辉绿岩形成于印支晚期(225 Ma),具有低SiO2(44.56%~45.91%)、高MgO(9.49%~10.60%)及高Mg#值(66.0~67.5)特征;富集K、Rb、Ba、Sr等大离子亲石元素,相对弱亏损Ta、Nb、P等高场强元素;轻、重稀土元素分馏较明显(LaN/YbN为6.83~8.73),稀土元素配分模式呈右倾的轻稀土元素富集型;微量和稀土元素分布特征与洋岛玄武岩(OIB)相似。辉绿岩具有高的(87Sr/86Sr)i值(0.706 52~0.711 05)和低的εNd(t)值(-1.64~-0.16);(208Pb/204Pb)t为38.40...  相似文献   

7.
花岗岩可以有效示踪大陆基底物质,并区分具有不同地壳结构和演化历史的构造块体。洪镇花岗岩位于长江中下游地区江北A型花岗岩带的西延位置,距离郯庐断裂带约30 km。锆石SIMS定年表明,安庆怀宁县洪镇花岗岩形成于126.2±2.0 Ma,与长江中下游A型花岗岩以及大别造山带I型花岗岩的形成时代一致。洪镇花岗岩高硅、富钾,属于高钾钙碱性系列I型花岗岩。其富集轻稀土元素和大离子亲石元素,相对亏损中稀土元素和高场强元素,经历了角闪石为主的结晶分异。洪镇花岗岩具有较为富集的Sr—Nd—Hf同位素,和低放射性成因Pb同位素组成,其n(87Sr)/n(86Sr)(t)为0.7065~0.7066,εNd(t)值为-10.9~-12.0,锆石εHf(t)为-6.7~-13.2,n(206Pb)/n(204Pb)(t)、n(207Pb)/n(204Pb)(t)和n(208Pb)/n(204...  相似文献   

8.
浙闽沿海大面积出露的中生代酸性火山岩区有少量早白垩世玄武岩分布,它们具典型钾富集和铌等元素亏损特征,其同位素组成表现为较高ISr(0.7055-0.7106)、低的εNd(1.2--10.6,大多介于-3.2--10.6之间)及富放射性成因铅(206Pb/204Pb=18.355-18.726,207Pb/204Pb=15.455-15.799,208Pb/204Pb=38.530-39.319).这些特征表明玄武岩源区为一富集型的陆下岩石圈地幔,由古老的俯冲地壳物质再循环进入并交代地幔而形成。没有证据表明本区早白垩世基性和酸性岩浆之间发生过大规模的化学混合,但不排除同位素之间的交换以及局部的化学和机械混合。壳-幔混合与地壳混染仅在少数玄武岩的形成过程中起着较重要的作用。  相似文献   

9.
哈毕力格铀矿床位于华北陆块北缘中段,主要受乌兰哈达—猴儿山背斜和区内断裂控制。铀矿化主要产于新太古界乌拉山群第二岩段石英岩中,一直被认为是变质成因铀矿床。在分析该矿床成矿地质背景和矿化特征的基础上,系统研究了矿石与围岩中黄铁矿的硫、铅同位素特征。数据表明,硫同位素组成变化于-4.7‰~12.9‰之间,暗示成矿流体主要来自岩浆热液,同时遭受了地层物质的混染。铅同位素组成(208Pb/204Pb=36.147~42.968,207Pb/204Pb=15.919~34.268, 206Pb/204Pb=19.488~168.032)远高于单阶段演化模式组成,不同样品的207Pb/204Pb-206Pb/204Pb线性关系良好,为典型的二阶段铅同位素演化体系,表明变质地层为成矿作用提供了铀源。通过放射性207Pb/206Pb计算,结合区域岩浆演化,认为古元古代(~1 805 Ma)区域变质作用促使乌拉山群铀发生初步富集,晚古生代(374 Ma)花岗闪长质岩浆分异出大量流体活化萃取变质地层中的铀,在有利构造空间富集成矿。  相似文献   

10.
新元古代形成的金川铜镍硫化物矿床位于华北板块西南缘龙首山中部,由于古生代造山过程中的构造挤压作用及变质热液叠加,矿床中铜铂得到再次富集。矿区及周边出露大量古生代基性—中酸性脉岩与岩基,暗示龙首山地区古生代发生了岩浆核杂岩隆起作用。综合研究了矿区切穿赋矿岩体的辉绿岩脉、煌斑岩脉和花岗斑岩脉,通过锆石U-Pb定年,获得侵入金川铜镍矿床的花岗斑岩锆石U-Pb年龄为367.1±2.0 Ma;煌斑岩锆石U-Pb年龄为400.6~425.3 Ma;前期工作获得辉绿岩中锆石的U-Pb年龄为423.5±1.4 Ma。初步认定矿区各类脉岩的形成时代为古生代。岩石地球化学及同位素地球化学分析结果显示,辉绿岩样品的εNd(t)值为-4.59~-1.58,(87Sr/86Sr)i值为0.7056~0.7077;煌斑岩样品的εNd(t)值为-2.97~-2.03,(87Sr/86Sr)i变化范围为0.7083~0.7085;证明基性脉岩的...  相似文献   

11.
东坑盆地位于南岭构造带东段,其中的流纹岩为该带燕山期最早的“流纹岩—玄武岩”双峰式火山岩组合的酸性端元.主量元素、微量元素、Sr-Nd-Pb-O-Hf同位素研究表明,流纹岩富硅、钾,贫镁、钙、钛,属亚碱性弱过铝质岩石;稀土元素富集,轻重稀土分异和铕负异常明显,表现典型的M型稀土元素4分组效应,富集高场强元素Ta、Hf、Zr、Nb、Ce、Y和大离子亲石元素Rb、Th、U、Ba、Ga,亏损大离子亲石元素Sr,具有A型流纹岩和高Sr-Ba流纹岩的微量元素特征;(87Sr/86Sr)i较高,(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i较低,εNd(t)、εHf(t)和δ18OV-SMOW较高,TDM2(Nd)和TDM2(Hf)较小.这些特征表明,东坑盆地流纹岩是拉张构造环境下源于新元古代亏损地幔和少量古老下地壳物质混合而成年轻下地壳部分熔融的产物,为早侏罗世早期南岭构造带东段处于拉张构造环境、地壳属正常厚度提供了岩石学证据.  相似文献   

12.
Nikolay Bonev  Grard Stampfli 《Lithos》2008,100(1-4):210-233
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive Ndi values in the range of + 4.87 to + 6.09, approaching the lower limit of MORB-like source, and relatively high (207Pb/204Pb)i (15.57–15.663) at low (206Pb/204Pb)i (18.13–18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low Ndi value of − 2.61 and is slightly more Pb radiogenic (207Pb/204Pb)i (15.64) and (206Pb/204Pb)i (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc–accretionary complex related to the southward subduction of the Meliata–Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early–Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc–trench system collided with the Rhodope in the Late Jurassic times.  相似文献   

13.
The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, extending more than 5000 km north to south, on both sides of the Atlantic Ocean. Its emplacement occurred about 200 Ma ago, at the Triassic–Jurassic boundary, and is linked to the initial breakup of Pangaea. Two areas of the province are studied here: French Guyana/Surinam (South America) and Guinea (West Africa), in order to document the petrogenesis and geodynamical significance of high-Ti and low-Ti basaltic magmas from the CAMP.

In Guyana, doleritic and gabbroic dykes are located on the edge of the Guiana Shield, and represent limited volumes of magma. They display low SiO2 (47–50%), high TiO2 (2.5–3.5%) and high FeO tholeiitic trends and show variably enriched trace element patterns ((La/Yb)n=1.5–5.1). Their isotopic signature and ratios of very incompatible elements (εNdi=+5.8 to +4.2, (87Sr/86Sr)i=0.703–0.705, (207Pb/204Pb)i=15.46–15.64) match a depleted PREMA (prevalent mantle)-like source. Their genesis can be modeled by ca. 15% partial melting of a lherzolite source, and a subsequent limited fractional crystallization (5–10%) or a slight upper crustal assimilation–fractional crystallization (AFC, r=0.1, Proterozoic contaminant). In Guinea, in contrast, huge volumes of CAMP magmas were intruded along the Rockelides suture and the West African craton, forming the Fouta Djalon sills and the Kakoulima laccolith. The laccolith is more than 1000 m thick. These features consist of gabbros, dolerites, diorites and mafic (gabbro) and ultramafic (dunite, wherlite) cumulates. Guinean tholeiites show high SiO2 (51–58%), low TiO2 (0.7–1.2%) and FeO trends, with high LILE/HFSE ratios and slight negative Nb–Ta anomalies. Isotopic signatures (εNdi=+0.4 to −5.3, (87Sr/86Sr)i=0.705–0.710, (207Pb/204Pb)i=15.57–15.66) indicate a more enriched source than for Guyana as well as a higher rate of magma–upper crust interaction through an AFC process (r=0.3, Birimian crust contaminant) and, probably, an additional upper crustal contamination for the most differentiated sample.

This geochemical study supports the prevalence in Guinea, as for other low-Ti CAMP tholeiites, of a lithospheric mantle source, previously enriched during ancient subduction events, and preferentially reactivated in late Triassic times by edge-driven convection between cratonic and mobile belt domains. A larger contribution from a depleted asthenospheric source is required to generate high-Ti tholeiites in Guyana, which may reflect the development of CAMP rifting towards the initiation of the Central Atlantic oceanic crust.  相似文献   


14.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

15.
Cerro Redondo is an ancient cinder cone now almost completely eroded, sited over a sill that corresponds to a sub-volcanic magma chamber, in Santa Cruz province, Patagonia, Argentina. It is composed of Pliocene-Pleistocene alkaline basalt containing spinel-facies lherzolite and harzburgite mantle xenoliths. Core compositions of pyroxenes indicate temperatures of 823 °C to 1043 °C and pressures of 12.4 kb to 21.4 kb. Based on PT estimates, petrographic, geochemical, and isotopic characteristics, we propose that Cerro Redondo xenoliths come from a thick homogeneous mantle column (36 km to 63 km depth), and present different degrees of basalt infiltration. A simple mixing model based on Sr isotopes was used to quantify the host basalt infiltration, and contamination values of 0.0%, 0.2%, 3%, and 12% were obtained for samples X-F, X-D, X-C, and X-B, respectively. For unknown reasons, samples X-G and X-E suffered selective isotopic and trace element modification, respectively, associated with 1% of basalt infiltration. Sample X-F best represents the sub-continental lithospheric mantle column, conserving primary equilibrium textures with sharp grain boundaries, and having TiO2, CaO, Na2O, K2O, and P2O5 contents lower than average spinel lherzolite, flat chondrite-normalized REE pattern, and 87Sr/86Sr and 143Nd/144Nd ratios of 0.70519 and 0.51297, respectively. This sample records a decoupling of the Sr–Nd system where Sr ratios increase at constant Nd ratios, possibly caused by chromatographic processes. Its 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are 17.987, 15.556, and 37.959, respectively. As the interaction with the host basalt increases, xenoliths show a gradual increase of disequilibrium textures such as reaction rims and exsolution lamellae in orthopyroxene and clinopyroxene, and increase of TiO2, CaO, Al2O3, Na2O, K2O, P2O5, LREE, and incompatible element concentrations. The Sr–Nd system shows an unusual positive trend from the unmodified sample X-F toward the host basalt isotope composition with 87Sr/86Sr and 143Nd/144Nd ratios of 0.70447 and 0.51279, respectively, while 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios tend to increase toward those of the host basalt (18.424, 15.648, and 38.728, respectively) as the xenolith–basalt interaction increases. The basalt–xenolith reaction probably started during the transport of the xenoliths to the surface, and continued during the residence of xenoliths in the sub-volcanic magma chamber of Cerro Redondo.  相似文献   

16.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   

17.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

18.
Isotope data and trace elements concentrations are presented for volcanic and plutonic rocks from the Livingston, Greenwich, Robert, King George and Ardley islands (South Shetland arc, Antarctica). These islands were formed during subduction of the Phoenix Plate under the Antarctica Plate from Cretaceous to Tertiary. Isotopically (87Sr/86Sr)o ratios vary from 0.7033 to 0.7046 and (143Nd/144Nd)o ratios from 0.5127 to 0.5129. εNd values vary from +2.71 to +7.30 that indicate asthenospheric mantle source for the analysed samples. 208Pb/204Pb ratios vary from 38.12 to 38.70, 207Pb/204Pb ratios are between 15.49 and 15.68, and 206Pb/204Pb from 18.28 to 18.81. The South Shetland rocks are thought to be derived from a depleted MORB mantle source (DMM) modified by mixtures of two enriched mantle components such as slab-derived melts and/or fluids and small fractions of oceanic sediment (EM I and EM II). The isotopic compositions of the subduction component can be explained by mixing between at least 4 wt.% of sediment and 96 wt.% of melts and/or fluids derived from altered MORB.  相似文献   

19.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号