首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the net heat gain of the sea surface are calculated over the Indian and the Pacific Oceans for the domain of 35°N-35°S and 45°E-75°W. The results indicate that the upward transfer of the latent and the sensible heat fluxes over the winter hemisphere is larger than that over the summer hemisphere. The sensible heat over the tropical mid Pacific in the Southern Hemisphere is transported from the atmosphere to the ocean, though its magnitude is rather small. The latent heat flux gained by the air over the eastern Pacific is less than the mean value of the normal year. The net radiation, on which the cloud amount has considerable impact, is essentially zonally distributed. Moreover, the sea surface temperature (SST) has a very good correlation with the net radiation, the region of warm SST coinci  相似文献   

2.
Impacts of sea spray on the boundary layer structure of Typhoon Imbudo   总被引:1,自引:1,他引:0  
High winds in a typhoon over the ocean can produce substantial amounts of spray in the lower part of the atmospheric boundary layer, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the consequent effects on the boundary layer structure and the evolution of the typhoon are largely unknown. The focus of this paper is on the role of sea spray on the storm intensity and the structure of the atmospheric boundary layer. The case study is Typhoon Imbudo in July 2003. The results show that sea spray tends to intensify storms by increasing the sea surface heat fluxes. Moreover, the effects of sea spray are mainly felt in boundary layer. Spray evaporation causes the atmospheric boundary layer to experience cooling and moistening. Sea spray can cause significant effects on the structure of boundary layer. The boundary-layer height over the eyewall area east to the center of Typhoon Imbudo was increased with a maximum up to about 550 m due to sea spray, which is closely related with the enhancements of the heat fluxes, upward motions, and horizontal winds in this region due to sea spray.  相似文献   

3.
20世纪90年代后期南海上层海温变化趋势的转折   总被引:1,自引:1,他引:0  
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data sets and two reanalysis data sets. The trends of the SCS sea surface temperature(SST) have changed from warming to cooling since the late 1990 s. A heat budget analysis suggests that the warming of the surface mixed layer during 1984–1999 is primarily attributed to the horizontal heat advection and the decrease of upward long wave radiation, with the net surface heat flux playing a damping role due to the increase of upward latent and sensible heat fluxes. On the other hand, the cooling of the surface mixed layer during 2000–2009 is broadly controlled by net surface heat flux, with the radiation flux playing the dominant role. A possible mechanism is explored that the variation of a sea level pressure(SLP) over the North Pacific Ocean may change the prevailing winds over the SCS, which contributes to the change of the SST in the SCS through the horizontal heat advection and heat fluxes.  相似文献   

4.
Based on hydrographic data obtained at an ice camp deployed in the Makarov Basin by the 4th Chinese Arctic Research Expedition in August of 2010, temporal variability of vertical heat flux in the upper ocean of the Makarov Basin is investigated together with its impacts on sea ice melt and evolution of heat content in the remnant of winter mixed layer(r WML). The upper ocean of the Makarov Basin under sea ice is vertically stratified. Oceanic heat flux from mixed layer(ML) to ice evolves in three stages as a response to air temperature changes, fluctuating from 12.4 W/m2 to the maximum 43.6 W/m2. The heat transferred upward from ML can support(0.7±0.3) cm/d ice melt rate on average, and daily variability of melt rate agrees well with the observed results. Downward heat flux from ML across the base of ML is much less, only 0.87 W/m2, due to enhanced stratification in the seasonal halocline under ML caused by sea ice melt, indicating that increasing solar heat entering summer ML is mainly used to melt sea ice, with a small proportion transferred downward and stored in the r WML. Heat flux from ML into r WML changes in two phases caused by abrupt air cooling with a day lag. Meanwhile, upward heat flux from Atlantic water(AW) across the base of r WML, even though obstructed by the cold halocline layer(CHL), reaches0.18 W/m2 on average with no obvious changing pattern and is also trapped by the r WML. Upward heat flux from deep AW is higher than generally supposed value near 0, as the existence of r WML enlarges the temperature gradient between surface water and CHL. Acting as a reservoir of heat transferred from both ML and AW, the increasing heat content of r WML can delay the onset of sea ice freezing.  相似文献   

5.
This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentration in surface sea water and in the air were measured during a research cruise from Hawaii to Tahiti. The diurnal variation of air temperature over the sea surface differed from the diurnal cycle of sea surface temperature because of the high heat capacity of sea water. The diurnal cycle of average DMS concentration in the air was studied in relation to the atmospheric stability parameter and surface heat flux. All these parameters had minima at noon and maxima in the early morning. The correlation coefficient of the air DMS concentration with wind speed (at 15 m high) was 0. 64. The observed concentrations of DMS in the equatorial marine surface layer and their diurnal variability agree well with model simulations. The simulated results indicate that the amplitude of the cycle and the mean  相似文献   

6.
New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m~2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m~2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.  相似文献   

7.
Turbulent eddies play a critical role in oceanic flows. Direct measurements of turbulent eddy fluxes beneath the sea surface were taken to study the direction of flux-carrying eddies as a means of supplementing our understanding of vertical fluxes exchange processes and their relationship to tides. The observations were made at 32 Hz at a water depth of ~1.5 m near the coast of Sanya, China, using an eddy covariance system, which mainly consists of an acoustic doppler velocimeter(ADV) and a fast temperature sensor. The cospectra-fit method-an established semi-empirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves-was used in the presence of surface gravity waves to quantify the turbulent eddy fluxes(including turbulent heat flux and Reynolds stress). As much as 87% of the total turbulent stress and 88% of the total turbulent heat flux were determined as being at band frequencies below those of surface gravity waves. Both the turbulent heat flux and Reynolds stress showed a daily successive variation;the former peaked during the low tide period and the later peaked during the ebb tide period.Estimation of roll-off wavenumbers, k0, and roll-off wavelengths, λ0(where λ0=2π/k0), which were estimated as the horizontal length scales of the dominant flux-carrying turbulent eddies, indicated that the λ0 of the turbulent heat flux was approximately double that of the Reynolds stress. Wavelet analysis showed that both the turbulent heat flux and the Reynolds stress have a close relationship to the semi-diurnal and diurnal tides, and therefore indicate the energy that is transported from tides to turbulence.  相似文献   

8.
吕宋海峡西部深海盆内孤立波潜标观测研究   总被引:2,自引:0,他引:2  
Using a net surface heat flux (Qnet) product obtained from the objectively analyzed air-sea fluxes (OAFlux) project and the international satellite cloud climatology project (ISCCP), and temperature from the simple ocean data assimilation (SODA), the seasonal variations of the air-sea heat fluxes in the northwestern Pa cific marginal seas (NPMS) and their roles in sea surface temperature (SST) seasonality are studied. The seasonal variations of Qnet, which is generally determined by the seasonal cycle of latent heat flux (LH), are in response to the advection-induced changes of SST over the Kuroshio and its extension. Two dynamic regimes are identified in the NPMS: one is the area along the Kuroshio and its extension, and the other is the area outside the Kuroshio. The oceanic thermal advection dominates the variations of SST and hence the sea-air humidity plays a primary role and explains the maximum heat losing along the Kuroshio. The heat transported by the Kuroshio leads to a longer period of heat losing over the Kuroshio and its Extension. Positive anomaly of heat content corresponds with the maximum heat loss along the Kuroshio. The oceanic advection controls the variations of heat content and hence the surface heat flux. This study will help us understand the mechanism controlling variations of the coupled ocean-atmosphere system in the NPMS. In the Kuroshio region, the ocean current controls the ocean temperature along the main stream of the Ku roshio, and at the same time, forces the air-sea fluxes.  相似文献   

9.
- During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method is discussed to calculate the sensible heat flux over the ocean in unstable stratification. Becausehumidity is great over the ocean, so we have to consider the influence of water vapor structure parameter Ce2and the correlation coefficient betweene and T on the calculation of sensible heat flux using CT2 profiles measured by sodar. A new formula is suggested in terms of parameterization. The sensible heat flux calculated by sodar measurements is compared with that by bulk transfer method, and the results agree well.  相似文献   

10.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

11.
海洋飞沫方案改进对台风“威马逊”强度预报的影响   总被引:1,自引:0,他引:1  
本文采用分粒径段组合方式改进海气耦合模式海洋飞沫方案,并利用耦合模式对1409号台风"威马逊"进行数值模拟,分析了海洋飞沫方案改进对台风结构、强度以及海气动量通量、热量通量模拟结果的影响。结果显示,耦合模式中海洋飞沫方案可通过改变海表面粗糙度影响海气动量与热量通量;海洋飞沫还可以通过沫滴向大气输送感热和水汽而直接影响海气热通量,进一步影响台风的强度。模拟结果显示改进后海洋飞沫方案的台风强度更接近观测。改进海洋飞沫方案后粗糙度的计算结果小于原始方案,相应地海气热通量以及下垫面耗散作用也弱于后者,海表面风场是海气热交换与下垫面耗散共同作用的结果。  相似文献   

12.
Similarity and dimension considerations applied to convection in a rotating fluid allows one to estimate the sizes and horizontal velocities of generated vortices. To do this, it is necessary to know the buoyancy flux in the fluid and the angular velocity of fluid rotation [1, 2]. The author’s preliminary efforts [3] have shown that the sizes, wind speeds, and total kinetic energy can thus be estimated correctly for tropical cyclones (TCs), as well as for polar lows (PLs) (which are often called explosive mesocyclones because they take just a few hours to develop). In this study, the sensible and latent heat fluxes for U = 33 m/s and the related buoyancy fluxes are estimated on the basis of climatology, bulk formulas, and the velocity scale of convection in a rotating fluid. In the tropics, at hurricane wind speeds U ≥ 33 m/s and climatological air humidity r = 80%, the total heat flux at the water surface temperature T s ≥ 26°C becomes equal to or greater than 700 W/m2. Due to the Clausius-Clapeyron equation, the latent heat flux to the atmosphere (the main part of the flux in the tropics) decreases substantially at lower values of T s. Thus, an energy flux from the ocean to the atmosphere of 700 W/m2 or greater should be regarded as the first necessary condition for TC genesis instead of the temperature T s. Low static stability, which must be at least half its climatological value as estimated here, is another necessary condition [4]. In polar regions, total fluxes roughly twice those in the tropics are needed for the formation of explosive mesocyclones, PLs, which is explained by the much smaller role of latent heat, greater geostrophicity, and stronger static stability of the atmosphere there. Enthalpy fluxes and wind speeds are interrelated: the larger the flux is, the stronger the convection, the higher the concentration of angular momentum in an ascending convective air column, and the greater the azimuthal velocity in the vortex are, which in turn enhances the transfer of energy from the ocean. Considering the problem with the use of simple analytic relations makes it possible, for the first time, to find a numerical criterion for their generation. It is hoped that this material may be useful for educational purposes as well.  相似文献   

13.
本文应用高风速条件下海面动力粗糙度长度,拓展了COARE3.0块体通量算法,考虑高风速下,海洋飞沫对热通量的贡献。利用GSSTF3(Goddard Satellite-based Surface Turbulent Fluxes Version 3)遥感产品、GSSTF_NCEP(National Centers Environmental Prediction)再分析资料和浮标KEO实测数据,探讨了中国南海台风LEO和西北太平洋台风SOULIK期间湍流热通量的变化。研究结果表明:感热通量与潜热通量相比很小;台风的轨迹与潜热通量的分布密切相关且在台风轨迹的东偏北区域潜热通量数值大;在热带低压之前,原潜热通量与改进后潜热通量的差值即飞沫热通量很小,随着台风等级的增加,飞沫热通量也增加。当台风LEO达到最高即台风级别时原潜热通量达到300W/m2,飞沫热通量与原通量的比值高达12%,而台风SOULIK达到强台风级别时原潜热通量达到1000W/m2,飞沫热通量与原通量的比值达到20%,显著高于台风LEO,飞沫效应更明显。  相似文献   

14.
Gridded fields of sea surface temperature (SST), sea level pressure (SLP), and wind speed were used in combination with data for the atmospheric mole fraction of CO2 and an empirical relationship between measured values of the fugacity of carbon dioxide in surface water and SST, to calculate the air–sea CO2 flux in the northern North Atlantic. The flux was calculated for each of the months October–March, in the time period 1981 until 2001, allowing for an assessment of the interannual variations in the region. Locally and on a monthly time scale, the interannual variability of the flux could be as high as ±100% in regions seasonally covered by sea ice. However, in open-ocean areas the variability was normally between ±20% and ±40%. The interannual variability was found to be approximately halved when fluxes averaged over each winter season were compared. Summarised over the whole northern North Atlantic, the air to sea carbon flux over winter totalled 0.08 Gton, with an interannual variability of about ±7%. On a monthly basis the interannual variations were slightly higher, about ±8% to ±13%. Changes in wind speed and atmospheric fCO2 (the latter directly related to SLP variations) accounted for most of the interannual variations of the computed air–sea CO2 fluxes. A tendency for increasing CO2 flux into the ocean with increasing values of the NAO index was identified.  相似文献   

15.
This article presents the results of long-term studies of the dynamics of carbonate parameters and air–sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from–2.4 to–22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.  相似文献   

16.
A surf zone with large breaking waves produces more spray than do offshore regions. Latent heat of spray evaporation causes change in the surrounding temperature and wind velocity, resulting in further alterations in temperature, wind velocity and heat flux. Spray in a surf zone with large breaking waves may have unignorable effect on determination of a local meteorological field because of this interconnected relationship as well as its higher population than in the open ocean. In this study, the effects of the spray latent heat on a meteorological field were investigated. The authors propose a method for estimating latent heat of spray vaporization over the ocean. The method was applied to a meso-scale meteorological model to perform numerical experiments with consideration of heat flux by spray. Although the contribution of heat flux on the ocean was as small as 2.5%, fluctuations of air temperature and wind velocity increased over time due to the effects of spray. The fluctuations are thought to cause uncertainty in weather prediction. Numerical experiments with spray provided predictions of air temperature and wind velocity near a coast line that were consistent with observational data, especially when the population of spray droplets increased by two orders of magnitude as is often observed in a coastal area.  相似文献   

17.
本文以2006年9月日本以南海域的台风YAGI为例,应用黑潮延伸体附近的KEO浮标观测资料,并结合卫星遥感等融合资料,分析海洋飞沫在台风不同发展阶段对海气界面间热量通量和动量通量的影响。首先,定量地分析台风期间海洋飞沫对海气热通量的影响。结果表明,在台风YAGI过境期间,海洋飞沫能够显著地加剧海气界面间的热量交换,尤其是潜热交换。海洋飞沫增加的热通量随着风速的增强而增大,随着波龄的增大而减小。随后,通过动量分析表明,在台风YAGI过境期间,海洋飞沫显著地增强了由大气向海洋的动量转移。当风速达到台风量级后,考虑海洋飞沫所增加的动量通量与界面动量通量大小相当,同时,在此风速条件下,海洋飞沫在海气界面形成极限饱和悬浮层,抑制风到海表面的动量转移,导致海气界面间总的动量通量的增长率随之减小。  相似文献   

18.
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air–sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air–sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号