首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文章  刘凯  陈晓恋 《地球科学》2015,40(5):918-924
抽水井附近由于流速过快往往发生非达西流,而远离抽水井随着流速下降又变为达西流.为了描述这些特征,建立了承压含水层中非完整井附近“非达西-达西”两区渗流模型,即距离抽水井较近的区域由于流速较快假设发生非达西渗流,并利用Izbash公式刻画,而距离抽水井较远由于流速较慢假设仍然满足达西定律,含水层中垂向流速较小也利用达西定律描述.通过线性化近似方法结合Laplace变换和有限Fourier余弦变换对模型进行了求解,分析探讨了该两区模型下水位降深曲线特征.结果表明:抽水初期,非达西渗流区域水位降深与全非达西渗流模型结果吻合,而抽水后期两区模型非达西渗流区域的水位降深与全达西模型水位降深基本一致,但大于全非达西渗流模型的水位降深;抽水初期,两区模型中达西渗流区域的水位降深比全达西渗流模型结果大,但比全非达西渗流模型结果小;对不同时间的水位降深随井距变化曲线分析发现非达西渗流区域水位降深随Izbash公式中的幂指数n增大而减小,而在达西渗流区域水位降深基本不受n值的影响.研究成果对非完整井抽水试验参数反演具有重要理论意义.   相似文献   

2.
This study investigated non‐Darcian flow to a well in a leaky aquifer considering wellbore storage and a finite‐thickness skin. The non‐Darcian flow is described by the Izbash equation. We have used a linearization procedure associated with the Laplace transform to solve such a non‐Darcian flow model. Besides, the Stehfest method has been used to invert the Laplace domain solutions for the drawdowns. We further analyzed the drawdowns inside the well for different cases. The results indicated that a smaller BD results in a smaller drawdown at late times and the leakage has little effect on the drawdown inside the well at early times, where BD is a dimensionless parameter reflecting the leakage. We have also found that the flow for the negative skin case approaches the steady‐state earlier than that for the positive skin. In addition, the drawdown inside the well with a positive skin is larger than that without skin effect at late times, and a larger thickness of the skin results in a greater drawdown inside the well at late times for the positive skin case. A reverse result has been found for the negative skin case. Finally, we have developed a finite‐difference solution for such a non‐Darcian flow model and compared the numerical solution with the approximate analytical solution. It has been shown that the linearization procedure works very well for such a non‐Darcian flow model at late times, and it underestimates the drawdowns at early times. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An analytical solution is obtained for 2‐D steady Darcian flow under and through a cutoff wall partially obstructing a homogeneous isotropic foundation of a dam. The wall is leaky; that is, flow across it depends on the ratio of hydraulic conductivity of the wall and the wall thickness that results in the third‐type (Robin) boundary condition along the wall, as compared with the Terzaghi problem for an impermeable wall. The Laplace equation for the hydraulic head is meshlessly solved in a non‐standard flow tube. A Fredholm equation of the second kind is obtained for the intensity of leakage across the wall. The equation is tackled numerically, by adjusted successive iterations. Flow characteristics (total Darcian discharge and its components through the wall and the window between the wall top and horizontal bedrock, stream function, head distribution, and Darcian velocity along the wall and tailwater bed) are obtained for various conductivity ratios, head drops across the structure, thicknesses of the foundation, and the degree of its blockage by the wall. Comparisons with the Terzaghi limit of an impermeable wall show that for common wall materials and thicknesses, the leakage may constitute tens of percent of the discharge under the dam. The through‐flow hydraulic gradients on a vertical wall face (Robin's boundary condition) as well as the exit gradients along a horizontal tailwater boundary (Dirichlet's boundary condition) acting for decades have deleterious impacts on dam stability because of potential heaving, piping, and mechanical–chemical suffusion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
无压渗流问题分析的多节点有限元方法   总被引:2,自引:1,他引:1  
王兆清  李术才  李树忱 《岩土力学》2008,29(10):2647-2650
采用基于平均值插值的多节点有限元方法分析有自由面渗流问题。在自由面附近采用多节点单元逼近自由面,利用平均值插值建立多节点单元的形函数,在远离自由面的区域采用四边形/三角形单元剖分。给定一个初始自由面位置,通过对渗流控制方程的多节点有限元求解,根据自由面上节点水头值判断自由面节点的调整方向和大小,最终迭代求出自由面的位置。土坝渗流问题的数值分析表明了所提方法的有效性和足够的计算精度。  相似文献   

5.
Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy’s law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.  相似文献   

6.
《Tectonophysics》1987,140(1):81-91
The shallow seismicity in the Italian region is dependent on the lithospheric and, especially, on the crustal structure. The major contribution to the definition of crustal features as well as of their lateral variations, which, in this area, are very large, has been given, so far, by the profiles of deep seismic soundings (wide-angle reflection). It has been found that the shape of the velocity-depth functions is a good indicator of the crustal type.This study illustrates the comparison of the velocity functions with the depth distribution of seismic foci. The analysis was done in active seismic zones, where the hypocentral depth is known with fair accuracy; both the events contained in the general catalogue of Italian earthquakes and the micro-earthquakes were used.The chosen zones are located in different geological settings. It has been found that different shapes of the velocity-depth curve correspond to different depths of the most active seismic layer. The role of velocity inversions seems particularly meaningful to mark the transition from the brittle to the ductile regime when the strongest seismicity is in the upper crust. When the lower crust or the upper mantle appears to be the source of the main seismicity, different shapes of the velocity functions are observed. Finally, a further different type of velocity distribution is obtained in zones of high geothermal flow, where only very shallow and low magnitude events are recorded.  相似文献   

7.
In this note, we examine the flow towards a well in a confined aquifer in the presence of an interaction force defined by the sum of three terms, namely, a Darcy term (linear in the velocity), a Forchheimer term (quadratic in the velocity), and an added‐mass term (linear in the acceleration). We obtain the exact dynamic solution for the piezometric head distribution around the well and investigate the relative importance of the non‐Darcian terms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
背斜-水动力复合油(气)藏油(气)水界面产状   总被引:1,自引:1,他引:0  
基于Hubbert的油(气)等势面坡度与水头关系的公式和达西定律, 推出了油(气)等势面坡度与水流的渗滤速度的关系式.根据此关系式, 讨论了各种情形水流速度与油气等势面坡度的关系.以此为基础, 认为未被油气充满转折端的背斜-水动力油气藏平面的油水界面由于水流速度大小和方向变化通常应该为曲面; 对被油气充满转折端的背斜-水动力油气藏倾斜的油水界面在不同方向剖面上倾斜不同: 圆柱状背斜横剖面油水界线水平、斜向剖面界线倾向相反, 倾伏背斜的横剖面可能同向倾斜但通常不在同一条倾斜的直线上.   相似文献   

9.
岩体裂隙网络非稳定渗流分析与数值模拟   总被引:1,自引:0,他引:1  
叶祖洋  姜清辉  姚池  周创兵 《岩土力学》2013,34(4):1171-1178
针对裂隙岩体的非稳定渗流问题,通过将Darcy定理扩展到包含干区的整个裂隙网络区域,并令潜在溢出边界条件为Signorini型互补边界条件,将湿区上的非稳定渗流问题转化为全域上的一个新的初边值问题。为降低试探函数选取的难度,建立与定义在整个裂隙网络区域上的偏微分方程(PDE)提法等价的抛物型变分不等式(PVI)提法,并给出裂隙网络非稳定渗流分析的有限元数值分析格式和迭代算法,与砂槽模型试验数据的对比分析,验证其有效性。最后,将文中发展的计算方法应用到含复杂裂隙网络的边坡非稳定渗流分析,计算结果很好地反映出边坡内部自由面随库水降落的变化规律,并能准确地描述裂隙网络内部渗流运动特征及流量分布的不均匀性。  相似文献   

10.
We consider the problem about determination of characteristics of a lava flow from the physical parameters measured on its surface. The problem is formulated as an inverse boundary problem for the model simulating the dynamics of a viscous heat-conducting incompressible inhomogeneous fluid, where, on the basis of additional data at one part of the model boundary, the missing conditions at another part of the boundary have to be determined, and then the characteristics of fluid in the entire model domain have to be reconstructed. The considered problem is ill-posed. We develop a numerical approach to the solution of the problem in the case of a steady-state flow. Assuming that the temperature and the heat flow are known at the upper surface of the lava, we determine the flow characteristics inside the lava. We compute model examples and show that the lava temperature and flow velocity can be determined with a high precision when the initial data are smooth or slightly noisy.  相似文献   

11.
A modification is proposed of Torricelli’s (1608–1647) formula for the velocity of water discharging from a small hole at the bottom of a large tank filled with fractal solid material. The new formula takes proper account of the mechanical energy losses due to flow in the solid matrix, thus expanding the area of validity of the classical Torricelli’s formula. Moreover, it offers a convenient alternative to Darcy’s law for estimating the discharge rate from an aquifer. The new formula was derived from laboratory experiments, with a low-Reynolds number discharge flow (Darcian flow). It was tested in a natural karst aquifer where the flow is non-Darcian, at Almiros spring on the island of Crete (Greece). In both cases, the predictive capability of the modified formula is established.  相似文献   

12.
This paper presents an indirect boundary integral equation method for analysis of quasi-static, time-harmonic and transient boundary value problems related to infinite and semi-infinite poroelastic domains. The present analysis is based on Biot's theory for poroelastodynamics with fluid viscous dissipation. The solution to a given boundary value problem is reduced to the determination of intensities of forces and fluid sources applied on an auxiliary surface defined interior to the surface on which the boundary conditions are specified. A coupled set of integral equations is established to determine the intensities of forces and fluid sources applied on the auxiliary surface. The integral equations are solved numerically in the Laplace domain for quasi-static and transient problems, and in the frequency domain for time-harmonic excitations. The kernel functions of the integral equation correspond to appropriate Green's functions for a poroelastic full space or half-space. The convergence and numerical stability of the present scheme are established by considering a number of bench mark problems. The versatility of the present method is demonstrated by studying the quasi-static response of a rigid spheroidal anchor, and time-harmonic and transient response of a rigid semi-circular tunnel.  相似文献   

13.
Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.  相似文献   

14.
Multiscale mixed/mimetic methods on corner-point grids   总被引:1,自引:0,他引:1  
Multiscale simulation is a promising approach to facilitate direct simulation of large and complex grid models for highly heterogeneous petroleum reservoirs. Unlike traditional simulation, approaches based on upscaling/downscaling, multiscale methods seek to solve the full flow problem by incorporating subscale heterogeneities into local discrete approximation spaces. We consider a multiscale formulation based on a hierarchical grid approach, where basis functions with subgrid resolution are computed numerically to correctly and accurately account for subscale variations from an underlying (fine-scale) geomodel when solving the global flow equations on a coarse grid. By using multiscale basis functions to discretise the global flow equations on a (moderately sized) coarse grid, one can retain the efficiency of an upscaling method and, at the same time, produce detailed and conservative velocity fields on the underlying fine grid. For pressure equations, the multiscale mixed finite-element method (MsMFEM) has been shown to be a particularly versatile approach. In this paper, we extend the method to corner-point grids, which is the industry standard for modelling complex reservoir geology. To implement MsMFEM, one needs a discretisation method for solving local flow problems on the underlying fine grids. In principle, any stable and conservative method can be used. Here, we use a mimetic discretisation, which is a generalisation of mixed finite elements that gives a discrete inner product, allows for polyhedral elements, and can (easily) be extended to curved grid faces. The coarse grid can, in principle, be any partition of the subgrid, where each coarse block is a connected collection of subgrid cells. However, we argue that, when generating coarse grids, one should follow certain simple guidelines to achieve improved accuracy. We discuss partitioning in both index space and physical space and suggest simple processing techniques. The versatility and accuracy of the new multiscale mixed methodology is demonstrated on two corner-point models: a small Y-shaped sector model and a complex model of a layered sedimentary bed. A variety of coarse grids, both violating and obeying the above mentioned guidelines, are employed. The MsMFEM solutions are compared with a reference solution obtained by direct simulation on the subgrid.  相似文献   

15.
Bubble–particle encounter during flotation is governed by liquid flow relative to the rising bubble, which is a function of the adsorbed frothers, collectors, and other surfactants and surface contaminants. Due to surface contamination, the bubble surface in flotation has been considered as immobile (rigid). However, surface contamination can be swept to the backside of the rising bubble due to the relative liquid flow, leaving the front surface of the rising bubble mobile with a non-zero tangential component of the liquid velocity. The bubble with a mobile surface was considered by Sutherland who applied the potential flow condition and analyzed the bubble–particle encounter using a simplified particle motion equation without inertia. The Sutherland model was found to over-predict the encounter efficiency and has been improved by incorporating inertial forces which are amplified at the mobile surface with a non-zero tangential velocity component of the liquid phase. An analytical solution was obtained for the encounter efficiency using approximate equations and is called the Generalized Sutherland Equation (GSE). In this paper, the bubble–particle encounter interaction with the potential flow condition has been analyzed by solving the full motion equation for the particle employing a numerical computational approach. The GSE model was compared with the exact numerical results for the encounter efficiency. The comparison only shows good agreement between the GSE prediction and the numerical data for ultrafine particles (< 10 μm in diameter), the inertial forces of which are vanishingly small. For non-ultrafine particles, a significant deviation of the GSE model from the numerical data has been observed. Details of the numerical methodology and solutions for the (collision) angle of tangency and encounter efficiency are described.  相似文献   

16.
In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.  相似文献   

17.
基于区域分解法的水文地质参数寻优研究   总被引:2,自引:0,他引:2  
在建立地下水流模型的过程中,水文地质参数寻优一直是较为复杂的步骤之一,具体难点包括寻优方法的取用,为保持总体平衡所引起的参数峰值异常以及总体寻优需要大量的计算机时等问题。本文运用区域分解法(Domain Decomposition method,DDM)的基本思想,将整个区域的参数寻优问题分解为各参数分区内的子域问题求解,通过寻找整个区域上的Nash均衡最终获得各子域上的最优参数。实验算例及其结果证明应用该方法实现水文地质参数自动寻优,不但具有高度的可靠性,同时优化问题的规模减小。此举不但减少了求解过程所需要的CPU时间,而且提高了参数拟合度。  相似文献   

18.
A hydrodynamic threshold between Darcian and non-Darcian flow conditions was found to occur in cubes of Key Largo Limestone from Florida, USA (one cube measuring 0.2 m on each side, the other 0.3 m) at an effective porosity of 33% and a hydraulic conductivity of 10 m/day. Below these values, flow was laminar and could be described as Darcian. Above these values, hydraulic conductivity increased greatly and flow was non-laminar. Reynolds numbers (Re) for these experiments ranged from <0.1 to 7. Non-laminar flow conditions observed in the hydraulic conductivity tests were observed at Re close to 1. Hydraulic conductivity was measured on all three axes in a permeameter designed specifically for samples of these sizes. Positive identification of vertical and horizontal axes as well as 100% recovery for each sample was achieved. Total porosity was determined by a drying and weighing method, while effective porosity was determined by a submersion method. Bulk density, total porosity and effective porosity of the Key Largo Limestone cubes averaged 1.5 g/cm3, 40 and 30%, respectively. Two regions of anisotropy were observed, one close to the ground surface, where vertical flow dominated, and the other associated with a dense-laminar layer, below which horizontal flow dominated.  相似文献   

19.
Remote sensing data can be integrated with analyses of topography, structural geology, hydrogeology and geophysics. The integration gives premises for the delineation of zones of potential groundwater resources in strongly fractured and karstified deep aquifers in the uplifted Meo Vac Highland, northern Vietnam. Remote sensing analysis outlines geological faults with hydrogeological significance. These faults are combined with a derived lineament density map, interpreted analysis of surface flow direction and existing hydrogeological data, resulting in indications of groundwater flow direction. An analysis of the SPOT 5 band ratio 4/1, together with indications of surface-flow direction in low terrains, results in a determination of underground cavern passages. The delineated zones of potential groundwater resources are verified by detailed hydrogeological field surveys and geophysical measurements. Remote sensing analysis is shown to effectively contribute to the investigation of groundwater resources for a hydrogeologically complex area.  相似文献   

20.
Faults are complex geological conditions that are commonly encountered during underground excavation. Many support schemes, such as using a single pilot heading method and 30-m-long borehole pre-grouting, have been implemented during the pilot excavation of an 800-m-deep underground opening that passes through large fault zones in East China. However, various geo-hazards, including groundwater inrush, debris flow, and roof collapse, are still occurring, which seriously threaten tunneling safety. To eliminate the geo-hazards and ensure tunneling safety, ground surface pre-grouting (GSPG) was proposed and implemented for the first time to reinforce the regional engineering rock mass for this proposed 800-m-deep underground opening passing through large fault zones. The minimum grouting pressure of GSPG at a depth of 800 m below the surface is put forward based on hydraulic fracturing theory, providing valuable guidance for GSPG engineering practice. Engineering practice demonstrates that GSPG eliminates geo-hazards, improves the objective rock mass stability, and ensures tunneling safety. Field measurements indicate that the displacement velocity of the surrounding rock shows an obvious fluctuation response under the influence of GSPG, and the impact of GSPG on the stability of the 800-m-deep underground opening that has been excavated dramatically decreases as the distance from the grouting borehole increases. Moreover, there is a strong negative exponential correlation between the maximum velocity of deformations and the distance from the grouting borehole. In addition, the safe distance underground during GSPG is greater than 137 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号