首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred and eighty lakes, ponds and reservoirs in Taiwan, and the offshore islands have been investigated since 1985. Effects such as warming/cooling, mixing, photosynthesis and respiration on pH have been identified. These effects were found to be less profound than those resulting from the geology. Since there is little rain or lake water pH data available prior to 1970, it was necessary to use proxy data in order to ascertain the history of lake acidification. In this study, we present data based on diatoms in a sediment core collected from a lake in the remote subalpine region of southern Taiwan. The acidity of this lake water was found to have increased since 1900. We measured the concentrations of 55 chemical species in lake water samples. In addition, concentrations of 26 chemical species were obtained from sediments. Conductivity, alkalinity (HCO3 ?), most other major and minor chemical species, as well as the non sea-salt SO4/Na ratio in lake water clearly decrease with elevation. Distribution of pH is similar, although the trend is less clear. Distribution of trace metals, however, shows a different trend as anthropogenic pollution, diagenetic reduction and lake acidification are at play.  相似文献   

2.
Zinc uptake in suspensions (?3.7 g L−1) of MX80 montmorillonite was investigated at pH 4.0 and 7.3, a total Zn concentration ([Zn]total) of 500 μM, and dissolved Si concentrations ([Si]aq) of ∼70 and ∼500 μM in 0.5 M NaCl, by kinetics experiments and polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Differential thermogravimetric analysis verified the cis-vacant character of the montmorillonite. No Zn uptake occurred at pH 4.0, confirming that cation exchange was hampered by the high ionic strength of the suspension. At pH 7.3 and low [Si]aq (∼70 μM), Zn uptake occurred rapidly during the first hour of reaction, and then leveled off to 50 μmol/g montmorillonite at 168 h. The uptake rate is consistent with Zn sorption on pH-dependent edge sites. At pH 7.3 and high [Si]aq (∼500 μM), the initial sorption rate was similar, but Zn sorption continued, reaching 130 μmol/g at 168 h, and was paralleled by Si uptake with a Si/Zn uptake ratio of 1.51(10), suggesting formation of a Zn (hydrous) silicate. P-EXAFS data indicated that the first oxygen coordination shell of sorbed Zn is split into two subshells at 1.97(2) and 2.08(3)-2.12(2) Å for all EXAFS samples. These two distances are assigned to a mixture of tetrahedral (IVZn) and octahedral (VIZn) Zn complexes. The proportion of IVZn was lower in the high [Si]aq samples and decreased with reaction time. Al low [Si]aq and 216 h of reaction, nearest cationic shells of 0.6(4) Al in the film plane and 0.5(4) Si out of the film plane were detected at 3.00(2) and 3.21(2) Å, respectively, and were interpreted as the formation of IVZn and VIZn mononuclear complexes at the edges of montmorillonite platelets, in structural continuity to the (Al, Mg) octahedral sheets. At high [Si]aq, in-plane Zn and Al and out-of-plane Si neighbors were detected at 4 h, indicating the formation of Zn phyllosilicate nuclei at the layer edges. At 313 h, Zn-Al pairs were no longer detected, and Zn atoms were surrounded on average by 3.4(5) in-plane Zn at 3.10(1) Å and 1.7(9) out-of-plane Si at 3.30(2) Å, supporting the precipitation of a Zn phyllosilicate. Thus, dioctahedral Al phyllosilicate may act as a nucleating surface for the heterogeneous formation of trioctahedral Zn phyllosilicate at [Si]aq relevant to natural systems.  相似文献   

3.
No pre-1977 quantitative data exist that describe phytoplankton biomass in the water column of Lake Suwa, a Japanese eutrophic lake, although several studies have been conducted since. To assess recent environmental changes with time in the lake, phytoplankton composition was determined from analysis of photosynthetic pigments in the sediment core. Specifically, the total chlorophyll a (TCh-a) concentration in the water column before 1977 was estimated for comparison with that of the water column and sediment deposited since 1977. The depth profile of zeaxanthin, a potential indicator of cyanobacteria activity, substantially increased from 1960 to 1973 (from 9.53 to 76.7?nmol?g?1). Additionally, the concentration of fucoxanthin, diadinoxanthin and diatoxanthin, originating from diatoms and dinoflagellates, increased slightly during this period (from 1.64 to 4.90, 1.86 to 3.54, and 4.00 to 3.26?nmol?g?1). Cyanobacteria have been the major algal species in the lake since 1949; however, the ratio of fucoxanthin versus total algal carotenoids has gradually increased since 1981 indicating diatoms have increased relative to cyanobacteria since 1979, and that organic matter inflow and nutrient concentrations have resulted in changes in the phytoplankton composition. Since 1977, the chlorophyll a concentration in water in the lake had a very similar pattern as the TCh-a concentration in the sediment. The concentration in the water column also corresponds to those in the sediment even before 1977. These results indicate that it might be possible to predict the phytoplankton biomass of the water column based on the TCh-a in the water and sediment in this lake.  相似文献   

4.
Carbon isotope ratio (δ13Corg) values of organic matter in lake sediments are commonly used to reconstruct environmental change, but the factors which influence change are varied and complex. Here we report δ13C values for sediments from Erlongwan maar lake in northeast China. In this record, changes in δ13C cannot be explained by simple changes in aquatic productivity. Instead, values were likely influenced by differences in the ratio between planktonic and benthic algae, as indicated by the remains of diatoms. This is because the variation of δ13Corg in algae from different habitats is controlled by the thickness of the diffusive boundary layer, which is dependent on the turbulence of the water. Compared with benthic algae, which grow in relatively still water, pelagic algae are exposed to greater water movement. This is known to dramatically reduce the thickness of the boundary layer and was found to cause even more severe δ13C depletion. In Erlongwan maar lake, low values were linked to the dominance of planktonic diatoms during the period commonly known as the Medieval Warm Period. Values gradually increased with the onset of the Little Ice Age, which we interpret as being driven by an increase in the proportion of benthic taxa, due to effect of the colder climate. The increase in planktonic diatoms at the end of the Little Ice Age, linked to higher temperature and a reduction in ice cover, resulted in a further decline in δ13Corg.  相似文献   

5.
High-resolution palaeoecological proxies of pollen, macrofossils and diatoms from an isolation lake provide a long-term record of the Holocene landscape history and shoreline displacement on the Biskopsmåla Peninsula in central Blekinge, SE Sweden. During the Preboreal/Boreal transition, the peninsula was sparsely vegetated by woodlands, along with lateglacial dwarf shrub/steppe communities. The lake basin was isolated from the shallow Yoldia Sea during this time. The regional climate improved from 10 700 cal. BP, evident as progressive expansion of Pinus-dominated mixed forest with deciduous trees. The lake basin was probably connected with the Ancylus Lake during the period 10700–10 100 cal. BP. Subsequently the basin became isolated again, corresponding to the Early Littorina Sea phase. Replacement of freshwater diatoms by those with brackish-water affinity at 8100 cal. BP indicates the initial transgression of the Littorina Sea in this basin. But not until 7500 cal. BP were brackish conditions fully established. Peaks of brackish-marine diatoms and dinoflagellates during 7500–7000 cal. BP indicate increased saltwater inflow to the Baltic Sea in response to global meltwater pulse 3. However, interactive changes in seagrass and stonewort macrofossil concentrations suggest that three minor transgressions during 5900–5300, 5000–4700 and 4400–4000 cal. BP occurred locally, associated with centennial-scale variations in regional wind pattern or coastal storminess. By 3000 cal. BP, the lake basin was finally isolated from the Baltic, and thereafter the landscape on the peninsula became gradually more influenced by human activities.  相似文献   

6.
Geochemical analysis of street dusts was conducted to evaluate the environment of Dhaka City, Bangladesh. Dust samples were collected from different areas (industrial, commercial, and residential) of Dhaka City, and their major, trace and rare earth elements (REE) were determined. Samples from the commercial area had Pb concentrations double those of the industrial and residential areas. Contents of Zn, Cu, Ni, and Cr in the industrial areas were greater than those in the commercial and residential areas. The REE patterns of all dusts in Dhaka are similar and are comparable to the average upper continental crust. The condition of the Dhaka environment was compared to that in Japan and other baseline sediments using Zn–Fe2O3 and Pb–Fe2O3 diagrams. Zn–Fe2O3 trends for the dusts show steep inclination compared to the baseline sediment and the Japanese urban sediment trends. Dhaka lake data show enrichment of Zn over the dusts, suggestive of Zn pollution from poorly controlled industrial sources. In contrast, on the Pb–Fe2O3 diagram, Dhaka dusts have greater Pb contents than lake sediments, probably due to the higher traffic density in the commercial area compared to the residential area including the area around the lake. The results suggest that higher levels of Pb and Zn in street dusts in Dhaka can most likely be attributed to the anthropogenic sources like vehicle emissions to the atmosphere and a rapid development.  相似文献   

7.
Our analysis of lipid molecular fossils from a Lake Titicaca (16° S, 69° W) sediment core reveals distinct changes in the ecology of the lake over an ∼25,000-yr period spanning latest Pleistocene to late Holocene time. Previous investigations have shown that over this time period Lake Titicaca was subject to large changes in lake level in response to regional climatic variability. Our results indicate that lake algal populations were greatly affected by the changing physical and chemical conditions in Lake Titicaca. Hydrocarbons are characterized by a combination of odd-numbered, mid- to long-chain (C21-C31) normal alkanes and alkenes. During periods when lake level was higher (latest Pleistocene, early Holocene, and late Holocene), the C21n-alkane, and the C25 and C27 alkenes dominate hydrocarbon distributions and indicate contribution from an algal source, potentially the freshwater alga Botryococcus braunii. The C30 4 α-methyl sterol (dinosterol) increases sharply during the mid-Holocene, suggesting a greatly increased dinoflagellate presence at that time. Long-chain alkenones (LCAs) become significant during the early Holocene and are highly abundant in mid-Holocene samples. There are relatively few published records of LCA detection in lake sediments but their occurrence is geographically widespread (Antarctica, Asia, Europe, North America). Lake Titicaca represents the first South American lake and the first low-latitude lake in which LCAs have been reported. LCA abundance and distribution may be related to the temperature-dependent response of an unidentified algal precursor. Although the LCA unsaturation indices cannot be used to determine absolute Lake Titicaca temperatures, we suspect that the published LCA U37K unsaturation calibrations can be applied to infer relative temperatures for early to mid-Holocene time when LCA concentrations are high. Using these criteria, the U37K unsaturation indices suggest relatively warmer temperatures in the mid-Holocene. In contrast to previous speculation, lipid analysis provides little evidence of a greatly increased presence of aquatic plants during the mid-Holocene. Instead, it appears that a few algal species were dominant in the lake. Based on the dramatic rise in abundances of LCAs and dinosterol during the early to mid-Holocene, we suspect that the algal producers of these compounds rose in response to a combination of physical and chemical changes in the lake. These include temperature, salinity, and alkalinity changes that occurred as lake level dropped sharply during a multi-millennial drought affecting the Central Andean Altiplano.  相似文献   

8.
This paper reports the first fossil (Tertiary) occurrence of freshwater sponges of the genus Ephydatia in the southern hemisphere. The sponges appear in diatomite lacustrine sediments of Late Miocene Quillagua Formation (Chile, Atacama region). The investigated specimens represent a new species, Ephydatia chileana sp. nov., which is close to the Recent cosmopolitan E. fluviatilis. On the basis of sedimentological and diatom assemblage data, sponge-bearing diatomites have been interpreted as deposited in open offshore shallow lacustrine conditions with slightly alkaline waters. The sponges show malformations, similar to some diatoms and probably caused by high heavy metal concentrations in a lake water. These concentrations are related to hydrothermal activity, which favored the leaching of volcanic rocks that outcrop extensively in the catchment.  相似文献   

9.
The Qarun Lake in the Faiyum Oasis (Egypt) provides a unique record of Holocene environmental and climate change in an arid area largely devoid of fossil proxy records. Multiple lithological, palaeontological and geochemical proxies and 32 radiocarbon dates from the 26‐m‐long core FA‐1 provide a time series of the lake's transformation. Our results confirm that a permanent lake appeared in the Holocene at c. 10 cal. ka BP. The finely laminated lake sediments consist of diatomite, in which diatoms and ostracods together with lower concentrations of ions indicate a freshwater environment at the end of the early and middle Holocene. This freshwater supply was closely associated with regular inflows of the Nile water during flood seasons, when the Intertropical Convergence Zone (ITCZ) migrated northwards in Africa, although it has probably never reached the Faiyum Oasis. Local rainfall, possibly connected with a northern atmospheric circulation, may have been important during winter. Several phases in the lake's evolution are recognized, represented by oscillations between deep open freshwater conditions during more humid climate and shallow fresh to brackish water during drier episodes. After a long freshwater phase, the lake setting has become more brackish since c. 6.2 cal. ka BP as indicated by diatoms and increasing contents of evaporite ions in the sediment. This clearly shows that since that time the lake has occasionally become partly desiccated. This is a result of reduced discharge of the Nile. In the late Holocene the lake was mostly brackish and then gradually turned into a saline lake. This natural process was interrupted about 2.3 cal. ka BP when a man‐made canal facilitated water inflow from the Nile. The examined FA‐1 core can be used as a reference age model of climate change in the Holocene and its impact on the development and decline of ancient civilizations in northeastern Africa.  相似文献   

10.
The Dongting Lake, the second biggest freshwater lake in China, consists of three wetlands of national importance, namely the East Dongting Lake, the South Dongting Lake, and the West Dongting Lake. Surface sedi-ments were sampled from 57 locations across the lake. Nutrient concentrations [total organic carbon (TOC), total N (TN) and total P (TP)] and 16 element concentrations (Al, As, B, Ca, Cd, Cr, Cu, K, Fe, Hg, Mn, Ni, Pb, Si, Ti and Zn) in the sediments were measured to investigate the impact of industrialization along the lake's coastline and sev-eral tributaries on the profiles of nutrients and heavy metals in the lake's surface sediments. R-mode cluster analysis (CA) was used to integrate geochemical data. The result showed that euthophication of the Dongting Lake resulted mainly from TN and TOC. The main polluting trace metals are Hg, As, Cd, Zn, Pb and Mn, which are largely ad-sorbed on clay minerals or Fe/Mn oxides, or deposited as carbonates. Principal component analysis (PCA) revealed the source of micropollutants. The worst affected district by heavy metals is the East Dongting Lake, the pollution sources may originate mainly from the Xiangjiang drainage area. The results demonstrated that multivariate methods are the potentially great tools for the interpretation of the environmental data on lake sediments.  相似文献   

11.
This is a summary of new oxygen isotope record of diatoms from Lake Kotokel sediments, with implications for responses of the lake system and its environment to global change over the past 46 kyr. Fossil diatoms in all samples are free from visible contamination signatures and contain no more than 2.5% Al2O3, which ensures reliable reconstructions. The 518O values in diatoms vary between + 23.7 and + 31.2%c over the record. The results present mainly diatom assemblages of summer blooming periods, except for the time span between 36 and 32 kyr, when the isotopic signal records mainly a shift from summer to spring blooming conditions. Possible water temperature changes only partly explain the changes in the isotopic record. The observed isotopic patterns are produced mainly by isotope changes in lake water in response to variations in air temperature, hydrology, and atmospheric circulation in the region. During Marine Isotope Stage (MIS) 2 (Last Glacial maximum), high 518Odiatom resulted from rapid evaporation and low fluvial inputs. The high 518Odiatom values of about + 29 to + 30%c during the first half of MIS 1 (Holocene interglacial) suggest an increased share of summer rainfalls associated with southern/southeastern air transport. The 518Odiatom decrease to + 24%c during the second half of MIS 1 is due to the overall hemispheric cooling and increased moisture supply to the area by the Atlantic air masses. The record of Lake Kotokel sediments provides an example of complex interplay among several climatic/environmental controls of 518Odiatom during the Late Pleistocene and the Holocene.  相似文献   

12.
Three Far East diatomites, Puzanov (Kunashir Island, Kuril Islands), Sergeevskii, and Terekhovka (Southern Primorye) are characterized in detail. Rock-forming taxa are identified (Puzanov—Aulacoseira subarctica (O. Mull.) Hawort and Stephanodiscus niagarae var. pusanovae Genkal et Cherepanova; Sergeevskii—Staurosira construens var. venter (Ehr.) Gran., Aulacoseira italica (Ehr.) Sim., and representatives of the genus Cymbella with large valves (up to 175 Jim in length); Terekhovka—Aulacoseira praegranulata var. praeislandica f. praeislandica (Sim.) Moiss.). Morphometric analysis of valves of the dominant taxa showed a low variability of valve parameters for the Puzanov diatomite and a high one for the Sergeevskii and Terekhovka diatomites. The lake environments of the diatoms forming the diatomites were reconstructed based on the elemental composition of diatom valves and the ecological structure of diatom paleocommunities. The high oxygen and low silicon concentrations in valves of the Puzanov diatomite, most likely, indicate that the diatoms were part of plankton communities formed in a large deep freshwater lake. Significant concentrations of silicon in valves of the Terekhovka diatomite, in contrast, suggest that the diatoms occurred in benthic ecotopes in a shallow lake. The age of the deposits was refined by detailed studies of Aulacoseira valves, using light and scanning electron microscopes. For example, the presence of Aulacoseira taxa of the “prae” group in the Terekhovka diatomite confirms its Pliocene age, and the presence of valves of the present species A. italica in the Sergeevskii diatomite points to its Late Pliocene age. The identified features of the diatomites permit their use in practice.  相似文献   

13.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

14.
We report results from an extensive study on the speciation of zinc (Zn) and its relation to the mobility and bioavailablity of this element in a smelter contaminated soil and an in situ remediated area of this soil 12 yr after the application of cyclonic ash and compost. Emphasis was placed on the role of neoformed precipitates in controlling Zn speciation, mobility and bioavailability under different environmental conditions. Twelve years after remediation, the pH of the treated and non-treated soil differed by only 0.5 pH unit. Using state-of-the-art electron and X-ray microscopies in combination with micro-focused extended X-ray absorption fine structure (μ-EXAFS) spectroscopy, no major differences in Zn speciation were found between samples of the treated and non-treated soil. In both soils, 30% to 50% of Zn was present in smelter related minerals (willemite, hemimorphite or gahnite), while 50% to 70% of Zn was incorporated into newly formed Zn precipitates. Contrary to the non-treated soil, the treated soil did not contain gahnite or sphalerite; it is possible that these minerals were dissolved under the higher pH conditions at the time of treatment. Desorption experiments, using a stirred flow technique with a 0.1 mol/L CaCl2 (pH 6.5) and a HNO3 (pH 4.0) solution were employed to determine the exchangeable Zn fraction and the Zn fraction which will be mobilized under more extreme weathering conditions, respectively. No significant differences were found in desorption behavior between the treated vs. non-treated soil. Bioavailability tests, using the R. metallidurans AE1433 biosensor showed that ∼8% of total Zn was bioavailable in both the treated and non-treated soils. It was concluded that the incorporation of Zn into newly formed precipitates in both the treated and non treated soils leads to a significant natural attenuation of the exchangeable/bioavailable Zn fraction at near neutral pH conditions. At lower pHs, conditions not favorable to the formation of Zn precipitates, the pool of Zn associated with the secondary Zn precipitates is potentially more bioavailable.  相似文献   

15.
近50年来抚仙湖重金属污染的沉积记录*   总被引:15,自引:8,他引:15  
文章以抚仙湖污染严重的北部和基本未受人类活动影响的中部为研究对象,分别采集了沉积岩芯FB和FZ,通过对岩芯的137 Cs测年和重金属元素(Cu,Ni,Ti,Cr,V,Pb,Cd和Zn)的含量分析,研究了湖泊重金属来源和污染历史,并利用地质累积指数法评价了湖泊重金属污染程度。结果表明:抚仙湖北部的平均沉积速率约为2.0~2.8mm/a;20世纪80年代以前,湖泊北部和中部的重金属元素(Cu,Ni,Ti,V,Pb,Cd,Zn)以自然来源为主;80年代以后,抚仙湖受到人类活动的影响,但湖泊中部Cu,Ni,Ti,V,Pb,Zn以及湖泊北部Cu,Ni,Ti,V仍以自然来源为主;湖泊北部Pb和Zn地质累积指数值小于1,属无污染到中度污染;北部Cd地质累积指数为3~4,达强度污染;中部Cd地质累积指数为2~3,属中强度污染;且Pb,Zn和Cd污染程度有加速增大的趋势。  相似文献   

16.
Hydrochemical studies of the Plitvice Lakes and their tributaries (Croatia/Yugoslavia) were coupled with micromorphological investigations on carbonate lake sediments and recent travertines. Karst springs discharge water from aquifers in Triassic and Jurassic dolomites and limestones and collect in lakes, which are ponded behind accreting travertine dams. Waters at springs have a high CO2 partial-pressure (greater than 7000 ppm) and are slightly undersaturated with respect to calcite (saturation index less than —0·03). CO2 partial pressure is quickly reduced in swift running streams, leading to very high supersaturation with carbonate minerals (saturation indices between 0·74 and 0·53). Calcite deposition, however, is restricted to the lake bottoms (formation of lake marl) and to the tufa dams. The annual carbonate precipitating capacity of the system based on water balance and downstream loss of dissolved ions is estimated to be on the order of 10 000 t CaCO3 as cascade deposits (tufa dams) or as micrite in lakes behind the travertine dams. The initial stages of travertine formation as a result of morphological, biological, and chemical factors are (i) moss settling on small ridges in the creek courses, (ii) epiphytes (diatoms and cyanobacteria) settling on the moss surface, (iii) micrite particles resuspending from lake bottoms and being trapped on mucous excretions from bacteria and diatoms, and (iv) inorganic calcite precipitating as sparite at nucleation sites provided by these crystal seeds. Geochemical studies of the lake marl and tufa dams show that amino acids are dominated by aspartic acid. Carbohydrates come from structural polysaccharides of diatoms. The sticky excretions, rich in aspartic acid, are necessary for the initiation of calcite precipitation. They may be a response of algal and bacterial metabolism to environmental stress by either nutrient depletion or high calcium concentrations in ambient waters. The formation of tufa and micrite (lake marl) appears to be initiated by localized biological factors and is not governed by mere calcite supersaturation of the water. Oligotrophy may be an essential precondition for the formation of fresh water carbonate deposits.  相似文献   

17.
《Applied Geochemistry》1993,8(3):207-221
The gases dissolved in Lake Nyos, Cameroon, were quantified recently (December 1989 and September 1990) by two independent techniques: in-situ measurements using a newly designed probe and laboratory analyses of samples collected in pre-evacuated stainless steel cylinders. The highest concentrations of CO2 and CH4 were 0.30 mol/kg and 1.7 mmol/kg, respectively, measured in cylinders collected 1 m above lake bottom. Probe measurements of in-situ gas pressure at three different stations showed that horizontal variations in total dissolved gas were negligible. Total dissolved-gas pressure near the lake bottom is 1.06 MPa (10.5 atm), 50% as high as the hydrostatic pressure of 2.1 MPa (21 atm). Comparing the CO2 profile constructed from the 1990 data to one obtained in May 1987 shows that CO2 concentrations have increased at depths to below 150 m. Based on these profiles, the average rate of CO2 input to bottom waters was 2.6 × 108 mol/a. Increased deep-water temperatures require an average heat flow of 0.32 MW into the hypolimnion over the same time period. The transport rates of CO2, heat, and major ions into the hypolimnion suggest that a low-temperature reservoir of free CO2 exists a short distance below lake bottom and that convective cycling of lake water through the sediments is involved in transporting the CO2 into the lake from the underlying diatreme. Increased CH4 concentrations at all depths below the oxycline and a high14C content (41% modern) in the CH4 4 m above lake bottom show that much of the CH4 is biologically produced within the lake. The CH4 production rate may vary with time, but if the CO2 recharge rate remains constant, CO2 saturation of the entire hypolimnion below 50 m depth would require ∼140a, given present-day concentrations.  相似文献   

18.
A new paleolimnological dataset from Lake Pacucha (13 °S, 3095 m elevation) in the Peruvian Andes provides evidence of changes in lake level over the past 24,700 yr. A late-glacial highstand in lake level gave way to an early-Holocene lowstand. This transition appears to have paralleled precessional changes that would have reduced insolation during the wet-season. The occurrence of benthic/salt-tolerant diatoms and CaCO3 deposition suggest that the lake had lost much of its volume by c. 10,000 cal yr BP. Pronounced Holocene oscillations in lake level included a second phase of low lake level and heightened volatility lasting from c. 8300 to 5000 cal yr BP. While a polymictic lake formed at c. 5000 cal yr BP. These relatively wet conditions were interrupted by a series of drier events, the most pronounced of which occurred at c. 750 cal yr BP. Paleolimnological changes in the Holocene were more rapid than those of either the last glacial maximum or the deglacial period.  相似文献   

19.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

20.
The Tepexpan Palaeoindian skeleton was discovered in 1947 close to the former Lake Texcoco margin, in the Basin of Mexico. The find has been the object of considerable interest and discussion over the last 60 years regarding its real age and archaeological interpretation. Here we report new AMS radiocarbon dates associated with the sedimentary succession at Tepexpan with ages between 19,110 ± 90 and 612 ± 22 14C years BP and a new uranium-series date for the skeleton with an age of 4700 ± 200 years BP that indicates a mid Holocene age. The sedimentary succession was studied in detail using: stable isotopes, diatoms, organic geochemistry and tephrochronology. The multi-proxy evidence suggests large changes around the margins of Lake Texcoco in terms of the balance between aquatic and terrestrial plants, C3 and C4 plants, saline, alkaline and freshwater conditions, volcanic activity, marginal reworking of lake sediments and input from the drainage basin through the late Pleistocene–late Holocene. These changes had large impacts on the prehistoric human populations living by the lake shores since the late Pleistocene in the Basin of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号