首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Waters from the Atlantic Ocean washed southward across parts of Anegada, east-northeast of Puerto Rico, during a singular event a few centuries ago. The overwash, after crossing a fringing coral reef and 1.5?km of shallow subtidal flats, cut dozens of breaches through sandy beach ridges, deposited a sheet of sand and shell capped with lime mud, and created inland fields of cobbles and boulders. Most of the breaches extend tens to hundreds of meters perpendicular to a 2-km stretch of Anegada??s windward shore. Remnants of the breached ridges stand 3?m above modern sea level, and ridges seaward of the breaches rise 2.2?C3.0?m high. The overwash probably exceeded those heights when cutting the breaches by overtopping and incision of the beach ridges. Much of the sand-and-shell sheet contains pink bioclastic sand that resembles, in grain size and composition, the sand of the breached ridges. This sand extends as much as 1.5?km to the south of the breached ridges. It tapers southward from a maximum thickness of 40?cm, decreases in estimated mean grain size from medium sand to very fine sand, and contains mud laminae in the south. The sand-and-shell sheet also contains mollusks??cerithid gastropods and the bivalve Anomalocardia??and angular limestone granules and pebbles. The mollusk shells and the lime-mud cap were probably derived from a marine pond that occupied much of Anegada??s interior at the time of overwash. The boulders and cobbles, nearly all composed of limestone, form fields that extend many tens of meters generally southward from limestone outcrops as much as 0.8?km from the nearest shore. Soon after the inferred overwash, the marine pond was replaced by hypersaline ponds that produce microbial mats and evaporite crusts. This environmental change, which has yet to be reversed, required restriction of a former inlet or inlets, the location of which was probably on the island??s south (lee) side. The inferred overwash may have caused restriction directly by washing sand into former inlets, or indirectly by reducing the tidal prism or supplying sand to post-overwash currents and waves. The overwash happened after A.D. 1650 if coeval with radiocarbon-dated leaves in the mud cap, and it probably happened before human settlement in the last decades of the 1700s. A prior overwash event is implied by an inland set of breaches. Hypothetically, the overwash in 1650?C1800 resulted from the Antilles tsunami of 1690, the transatlantic Lisbon tsunami of 1755, a local tsunami not previously documented, or a storm whose effects exceeded those of Hurricane Donna, which was probably at category 3 as its eye passed 15?km to Anegada??s south in 1960.  相似文献   

2.
A combination of numeric hydrodynamic models, a large-clast inverse sediment-transport model, and extensive field measurements were used to discriminate between a tsunami and a storm striking Anegada, BVI a few centuries ago. In total, 161 cobbles and boulders were measured ranging from 1.5 to 830?kg at distances of up to 1?km from the shoreline and 2?km from the crest of a fringing coral reef. Transported clasts are composed of low porosity limestone and were derived from outcrops in the low lying interior of Anegada. Estimates of the near-bed flow velocities required to transport the observed boulders were calculated using a simple sediment-transport model, which accounts for fluid drag, inertia, buoyancy, and lift forces on boulders and includes both sliding and overturning transport mechanisms. Estimated near-bed flow velocities are converted to depth-averaged velocities using a linear eddy viscosity model and compared with water level and depth-averaged velocity time series from high-resolution coastal inundation models. Coastal inundation models simulate overwash by the storm surge and waves of a category 5 hurricane and tsunamis from a Lisbon earthquake of M 9.0 and two hypothetical earthquakes along the North America Caribbean Plate boundary. A modeled category 5 hurricane and three simulated tsunamis were all capable of inundating the boulder fields and transporting a portion of the observed clasts, but only an earthquake of M 8.0 on a normal fault of the outer rise along the Puerto Rico Trench was found to be capable of transporting the largest clasts at their current locations. Model results show that while both storm waves and tsunamis are capable of generating velocities and temporal acceleration necessary to transport large boulders near the reef crest, attenuation of wave energy due to wave breaking and bottom friction limits the capacity of storm waves to transport large clast at great inland distances. Through sensitivity analysis, we show that even when using coefficients in the sediment-transport model which yield the lowest estimated minimum velocities for boulder transport, storm waves from a category 5 hurricane are not capable of transporting the largest boulders in the interior of Anegada. Because of the uncertainties in the modeling approach, extensive sensitivity analyses are included and limitations are discussed.  相似文献   

3.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

4.
The Mount Cook area in the Southern Alps of New Zealand is heavily glacierized with numerous peaks over 3000 m a.s.l. feeding several large valley glaciers. The region is subject to rapid tectonic uplift and heavy precipitation (up to 15 m per year). This paper describes the clast roundness, clast shape and textural characteristics associated with five glaciers (Fox, Franz Josef, Hooker, Mueller and Tasman) in terms of inputs to the glacier system, transport by the glaciers and reworking following glacial deposition. Inputs include rockfall, alluvial fan and avalanche material delivered to the surface of valley glaciers. Basal debris, where observed at the terminus of two glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by subglacial and proglacial streams. The dominant facies are (i) boulder gravel with mainly angular clasts on the steep slopes above the glaciers, (ii) sandy boulder gravel, with mainly angular and subangular clasts, forming lateral and end moraines, and (iii) sandy boulder/cobble gravel with mainly subrounded clasts, and sand, which represent glacially transported sediment reworked by braided rivers. Diamicton is rare in the contemporary glacial environment. Since most sediment associated with glaciers in the Southern Alps lacks unambiguous indications of glacial transport, interpretation of similar sediments in the geological record should not necessarily exclude the involvement of glacial processes.  相似文献   

5.
A distinctive Shell and Sand Sheet found beneath the marine ponds of Anegada, British Virgin Islands, was formed by a post-1650 AD overwash event, but its origin (tsunami or hurricane) was unclear. This study assesses the taphonomic characters of the shell and large clast material (>2?mm) to determine its provenance and origin. Pond-wide stratigraphic units (Shelly Mud, Shell and Sand Sheet, Mud Cap) were analyzed (12 samples) at four sites in Bumber Well and Red Pond along with eight samples from the Shell and Sand Sheet in a 2-km transect of Bumber Well. Mollusks in the pond muds include Anomalocardia spp. and cerithids with no allochthonous shells from the offshore reef-flat. Results show that the shells and clasts (>2?mm) are derived from the erosion and winnowing of the underlying Shelly Mud of the former marine pond, forming a distinctive sheet-like deposit with Homotrema sand. The Shell and Sand Sheet contains articulated Anomalocardia bivalves and moderate numbers of angular fragments (approximately 35%) that are likely from crab predation. Radiocarbon dates of articulated Anomalocardia specimens from the Shell and Sand Sheet range widely (approximately 4000?years), with shell condition (pristine to variably preserved) showing no correlation with age. The articulated condition of the bivalves with the wide-ranging dates suggests erosion and winnowing of the underlying Shelly Mud but minimal transport of the bivalves. The Shell and Sand Sheet has taphonomic characteristics indicative of a widespread tsunami overwash (sheet-like extent and articulated specimens) but lacks allochthonous reef-flat shells. Reef-flat shell material may not have penetrated the pond, as a tsunami would have to cross the reef-flat and overtop high dunes (2.2?m) hindering transport of larger shell material but allowing the Homotrema sand to penetrate. Processes including hurricane overwash, pond wave action, or tidal channel opening and closure are not favoured interpretations as they would not produce extensive sheet-like deposits. Taphonomic analysis is hampered by the limited (400?C500?years BP) depositional history from Anegada??s ponds and the lack of comparative data from other Caribbean locations.  相似文献   

6.
Marine hypersaline ponds on Anegada, British Virgin Islands contain stratigraphic evidence (Shell and Sand Sheet) of a A.D. 1650?C1800 overwash event that could have formed through a hurricane or tsunami. Candidates for the deposit include far-field (e.g. 1755 Lisbon tsunami) and local Puerto Rico Trench events (e.g. 1690), but hurricanes cannot be ignored. The goal of this study is to provide additional information to assess the origin of the deposit by examining the taphonomic characters of Homotrema rubrum, a common encrusting foraminifer in Caribbean reef settings. Surface samples (n?=?12) from major sub-environments (reef-flat, beach, storm wrack, and dune) and pond sections (n?=?6; 20?C80?cm thick) are analyzed for their Homotrema concentration (specimens/cm3) and taphonomic character. Particle-size analysis was conducted on the same sections and samples. Highly Preserved (red colored, angular, intact chambers) Homotrema dominate the beach, storm wrack, and reef-flat deposits relative to the dune sand, but the beach and storm wrack contain the largest specimens. The Shell and Sand Sheet in the pond has Highly Preserved and abundant Homotrema (specimens/cm3) versus other sedimentary units in the ponds (e.g. Mud Cap and Shelly Mud). Its taphonomic character is most similar (test size and condition) to the storm wrack deposit on the beach indicating an outside provenance for the sand. Concentration of Homotrema in the Shell and Sand Sheet declined southward indicating a northerly reef-flat provenance for the overwash, although it does not preclude a southern inundation as well. It is unclear whether Homotrema individuals originated from the reef itself or were eroded from older beach ridge deposits during the overwash event. Conclusions from Homotrema taphonomic analysis were limited by the lack of comparative data from known hurricane and tsunami deposits in other Caribbean regions.  相似文献   

7.
This study is based on the morphosedimentary analysis of the cliff-top storm deposits accumulated on the coast of Banneg Island located in the archipelago of Molène (Brittany, France). These CTSDs comprise large, tabular clasts quarried from the upper part of the cliff and the backing scoured platform by giant oceanic storm waves impacting directly the western coast of the island. An analysis of the distribution and the geomorphology of these accumulations were carried out using the DGPS topographic surveys. Most of the clasts are organised into imbricate boulder clusters or ridges deposited between 7.5 and 14.5 masl. 52 accumulations were inventoried from the north to the south of the island, representing a global volume of 1000 m3. The median size of the clasts calculated is equivalent to 0.8 × 0.6 × 0.4 m and a weight of 0.6 t. The largest one measuring 5.3 × 3.9 × 0.5 m (≈ 32 t) is located in the centre of the island (ridge #28). It has been deposited 14 m inland from the edge of the cliff at the elevation of 9 m. Sediment analysis shows that clast sizes become smaller with increasing distance from the shoreline, but there is no relationship between the sorting and the distance inland. A study of the hydrodynamic conditions inducing clast transport was undertaken by an analysis of the wave data from the 1989 to the 1990 winter storms. Models of wave runup indicate that their highest water levels may have reached up to 19 masl, 5 to 10 m higher than the top of the cliff. Submersion by giant storm waves has been more important and frequent in the centre and the south of the island. Wave data over the 1979 to the 2007 period shows that no events as powerful as those of the 1989 to the 1990 winter were recorded during the last 30 years. Yet, it appears that the 1979–1990 decade was characterized by important morphogeneous events while the following period (1990–2007) has experienced a sharp decrease in storm events. These variations could be attributed to the inversion from a negative towards a positive phase in the North Atlantic Oscillation index.  相似文献   

8.
A large-scale boulder beach close to a tidal glacier was examined at Eqip Sermia, Disko Bugt, West Greenland, in 1989. Photographs from 1912 and 1929 show an advance of the glacier of more than 1.5 km beyond its present location. Lateral and terminal moraines were formed in the sea, and subaerial parts and their positions can be detected from the old photographs. Today the outermost part of this moraine system has disappeared totally, except for about 1 km of the lateral moraine. The distal 300 m of the still existing moraine apparently has been displaced and transformed into a shape that, in plan view and cross-section, resembles a barrier spit. The material of the boulder beach consists mainly of coarse clasts with boulders of 1 m to more than 1.5 m in diameter. Distributions of clast sizes and sediment structures on the barrier surface also suggest wave and overwash dynamics as being the responsible agents. Located in the inner part of a fiord system, the fetches are restricted and thus normal waves are very small. Large waves generated by glacier calving, and/or sea-ice action, are therefore the only processes that can explain the geomorphology and clast distribution of this coastal feature.  相似文献   

9.
Coastal boulder deposits and chevrons are two features whose origin have triggered controversial discussions. Boulders are often used as indicators of past tsunamis and storms, with the former interpretation in many cases preferred due to the clast size. Chevrons, defined as large parabolic sand bodies, were previously attributed to (mega-)tsunami, potentially caused by oceanic impacts, because of their dimensions, height above sea level and alignment of the central axis. This study documents that chevrons along the Quobba coast in Western Australia are parabolic dunes and not related to tsunami inundation; their age is consistent with an arid period at about 3·9 to 2·3 ka when the sea level was 1 to 2 m higher than today. The internal age distribution proves an inland migration. Weakly developed soil horizons represent phases of intermittent dune stabilization and later reactivation. The calculated velocities required for wind transport and the prevailing wind directions are consistent with on-site meteorological parameters. The boulders at Quobba are most likely to be remnants of in situ platform denudation that produces shell hash, coral clasts and boulders. An unknown portion of the boulders was certainly moved by tropical cyclones. A previously proposed tsunami origin is unsustainable because the observed features can be explained by processes other than tsunamis. Boulders were tilted during gravitative platform collapse, standing water caused dissolution of the boulder bottoms, creating ‘pseudo-rockpools’, consequently not applicable as upside-down criteria, and ages of attached encrusting organisms document their colonization at higher sea level and (sub)recent frequent inundation by wave splash during rough seas.  相似文献   

10.
The 2004 tsunami deposits and probable paleotsunami deposits were studied at the southern Kho Khao Island, on Andaman Sea coast of Thailand. The 2004 tsunami laid down about 8?cm of fining upward medium sand and locally about 40?cm of massive coarse sand with common mud clasts. The sediments were characterized by the presence of marine foraminiferal assemblage; however, already after 5?years many of carbonate foraminiferal tests were partly or completely dissolved. The probable paleotsunami deposits form layer about 1?m thick. It consists of massive very coarse sand with common big shells and mud clasts. Its composition suggests a marine origin and the presence of mud clasts, and similarity to the 2004 tsunami deposits suggests that the layer was left by paleotsunami, which took place probably during the late Holocene, even though two shells within the layer gave 14C ages of 40,000?years or more.  相似文献   

11.
Single-layer and massive boulder beds, which include boulder pavements, are sporadically distributed in the glaciogenic Permo-Carboniferous Dwyka Formation. These matrix-supported beds consist of moderately to poorly sorted, rounded boulders, cobbles and pebbles with a clast composition similar to those in the underlying or overlying diamictite. Alternatively, the clasts are composed of monolithic basement rock-types. The clasts show a long-axis orientation which, in the case of the boulder pavements, is parallel to the striae on the pavements. The various types of boulder beds have a similar mode of deposition and their subglacial origin is evidenced by the clast orientation, clasts with stoss and lee sides, stacking of clasts, and the development of a cleavage in the matrix due to horizontal stresses exerted by the boulders in the subglacial sediment. Subglacial streams, kame mounds, subaqeously winnowed till, or boulder beaches supplied the coarse debris which was entrained in the basal ice by plastic flow and regelation. Selective lodgement of the transported boulders occurred down-glacier when the basal thermal conditions changed from cold-freezing to warm-melting. The formation of the different types of boulder beds is thought to depend primarily on the concentration of coarse debris in the basal ice.  相似文献   

12.
《Sedimentology》2018,65(3):639-669
Active margin continental slope outcrops from the Eocene Juncal Formation, the Eocene La Jolla Group and the Miocene Capistrano Formation display sedimentary structures and depositional geometries that suggest deposition from Froude supercritical flow, based on comparison to strata produced by flume experiments. These deposits range from boulder‐size soft clasts and cobble‐size hard clasts to silt and mud, and display long‐wavelength and low‐amplitude convex‐up and concave‐up geometries that range from centimetre to hundreds of metres scale, low‐angle foresets and backsets, and common internal and bounding erosion surfaces from centimetres to tens of metres in depth. In places, planar laminations, structureless beds and normally graded beds are laterally or vertically associated with such structures. In other places, consistent backsets or deep and steep‐sided scours occur. This study aimed to discuss the origin of the observed bedforms, contributed to recognition of supercritical flow deposits on continental slopes and expanded the outcrop examples of supercritical flow deposits to silt and mud. This work implies that the erosive and powerful Froude supercritical flow turbidity currents may have a substantial impact on erosional and depositional dynamics on deepwater slopes, especially on active margins due to the steep gradients and high sediment supply.  相似文献   

13.
Deposits in coastal lakes in northernmost Norway reveal that the Storegga tsunami propagated well into the Barents Sea ca. 8100–8200 years ago. A tsunami deposit – found in cores from five coastal lakes located near the North Cape in Finnmark – rests on an erosional unconformity and consists of graded sand layers and re‐deposited organic remains. Rip‐up clasts of lake mud, peat and soil suggest strong erosion of the lake floor and neighbouring land. Inundation reached at least 500 m inland and minimum vertical run‐up has been reconstructed to 3–4 m. In this part of the Arctic coastal lakes are usually covered by >1 m of solid lake ice in winter. The significant erosion and deposition of rip‐up clasts indicate that the lakes were ice free and that the ground was probably not frozen. We suggest that the Storegga slide and ensuing tsunami happened sometime in the summer season, between April and October. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Estimating palaeowind strength from beach deposits   总被引:1,自引:0,他引:1  
Abstract The geological record of past wind conditions is well expressed in the coarse gravel, cobble and boulder beach deposits of Quaternary palaeolakes in the Great Basin of the western USA and elsewhere. This paper describes a technique, using the particle‐size distribution of beach deposits, to reconstruct palaeowind conditions when the lakes were present. The beach particle technique (BPT) is first developed using coarse beach deposits from the 1986–87 highstand of the Great Salt Lake in Utah, combined with instrumental wind records from the same time period. Next, the BPT is used to test the hypothesis that wind conditions were more severe than at present during the last highstand of Lake Lahontan (≈ 13 ka), which only lasted a decade or two at most. The largest 50 beach clasts were measured at nine beach sites located along the north, west and south sides of Antelope Island in the Great Salt Lake, all of which formed in 1986–87. At these sites, the largest clast sizes range from 10 to 28 cm (b‐axis), and fetch lengths range from 25 to 55 km. Nearshore wave height was calculated by assuming that the critical threshold velocity required to move the largest clasts represents a minimum estimate of the breaking wave velocity, which is controlled by wave height. Shoaling transformations are undertaken to estimate deep‐water wave heights and, ultimately, wind velocity. Wind estimates for the nine sites, using the BPT, range from 6·5 to 17·4 m s?1, which is in reasonable agreement with the instrumental record from Salt Lake City Airport. The same technique was applied to eight late Pleistocene beaches surrounding the Carson Sink sub‐basin of Lake Lahontan, Nevada. Using the BPT, estimated winds for the eight sites range from 9·7 to 27·1 m s?1. The strongest winds were calculated for a cobble/boulder beach with a fetch of 25 km. Instrumental wind records for the 1992–99 period indicate that wind events of 9–12 m s?1 are common and that the strongest significant wind event (≥ 9 m s?1 for ≥ 3 h) reached an average velocity of 15·5 m s?1. Based on this preliminary comparison, it appears that the late Pleistocene western Great Basin was a windier place than at present, at least for a brief time.  相似文献   

15.
Coastal communities in the western United States face risks of inundation by distant tsunamis that propagate across the Pacific Ocean as well as local tsunamis produced by great (Mw?>?8) earthquakes on the Cascadia subduction zone. In 1964, the Mw 9.2 Alaska earthquake launched a Pacific-wide tsunami that flooded Cannon Beach, a small community (population 1640) in northwestern Oregon, causing over $230,000 in damages. However, since the giant 2004 Indian Ocean tsunami, the 2010 Chile tsunami and the recent 2011 Tohoku-Oki tsunami, renewed concern over potential impacts of a Cascadia tsunami on the western US has motivated closer examination of the local hazard. This study applies a simple sediment transport model to reconstruct the flow speed of the most recent Cascadia tsunami that flooded the region in 1700 using the thickness and grain size of sand layers deposited by the waves. Sedimentary properties of sand from the 1700 tsunami deposit provide model inputs. The sediment transport model calculates tsunami flow speed from the shear velocity required to suspend the quantity and grain size distribution of the observed sand layers. The model assumes a steady, spatially uniform tsunami flow and that sand settles out of suspension forming a deposit when the flow velocity decreases to zero. Using flow depths constrained by numerical tsunami simulations for Cannon Beach, the sediment transport model calculated flow speeds of 6.5?C7.6?m/s for sites within 0.6?km of the beach and higher flow speeds (~8.8?m/s) for sites 0.8?C1.2?km inland. Flow speed calculated for sites within 0.6?km of the beach compare well with maximum velocities estimated for the largest tsunami simulation. The higher flow speeds calculated for the two sites furthest landward contrast with much lower maximum velocities (<3.8?m/s) predicted by numerical simulations. Grain size distributions of sand layers from the most distal sites are inconsistent with deposition from sediment falling out of suspension. We infer that rapid deceleration in tsunami flow and convergences in sediment transport formed unusually thick deposits. Consequently, higher flow speeds calculated by the sediment model probably overestimate the actual wave speed at sites furthest inland.  相似文献   

16.
A Late Holocene cliff-top deposit of large boulders well above the limits of modern storm waves is described from the southern coast of the Atacama Desert (northern Chile). The largest moved boulder weighs >40 t and field data point to a flood height >18·5 m above high tide level and an inland penetration greater than 284 m from the cliff edge. The minimum flow velocity needed for particle entrainment was estimated as 10·1 ms−1 and the most likely processes of sediment deposition for different boulders were deduced. The boulder distribution, sorting and orientation of imbricated debris, together with the significant wave height of extreme storms reported and the occurrence of interplate earthquakes in the study area indicate that the deposit records a single event, interpreted here as a tsunami wave train rather than exceptional storm waves. The boulder field was dated to between the 13th and the 16th Centuries ce and possibly correlates with the 1420 Oei orphan tsunami, that affected the eastern coast of Japan. A magnitude of 8·8 to 9·4 has been estimated for the earthquake, which may be one of the larger events of a super-cycle of earthquakes in the southern Atacama Desert. These cycle-ending earthquakes involve large rupture areas (lengths in excess of 600 km) and highly destructive ocean-wide tsunamigenic events.  相似文献   

17.
We describe here a sequence of soft sediment deformation (SSD) structures at Dive Agar beach near Srivardhan in the west coast of India. The ~120-cm-thick sediment package is represented by a basal undeformed sand (layer A) sharply cut by ~30-cm-thick intermixed beach sand and terrigenous sand (layer B1) followed by complex load structures and convolutions (8?C15?cm) within a coarse sandy layer (B2). The layer B2 is scoured by terrigenous sand (layer C1) which is capped with a silty mud layer (C2). The entire sequence (B2?CC1?CC2) is intruded by sand dykes originating from the lower layer B1. This sediment package is further overlain by a heavy mineral reach marine sand (layer D) with liquefactions long axes inclined southward as a result of forceful long-shore drift. The profile ends up with coarse-grained, poorly sorted sand including angular clasts of terrigenous outwash deposits indicating return of distal inundations. Intense deformation (liquefaction) is restricted to the heavy mineral-rich marine and the intermixed sands (layers B2 and D), whereas the terrigenous sand layers show scoured bases with oscillatory and pebbly tops. The presence of complex load structures injecting into the underlying layers, the top-truncated sand dykes, macro-thrust faults, scouring, and inclusion of coral fragments can explain it as a record of tsunami in the west coast. Occurrence of un-decayed consumer plastic material within the deformed layers suggests it as one of the most recent tsunami events (i.e., 2004 IOT), the only reported event after 1945 in the west coast. Alternative marine and terrigenous sands are characteristic of tsunami run-up and backwash deposits, while the dimensions of SSDs may be related to the <2?m magnitude (height) of the 2004 IOT at Dive Agar.  相似文献   

18.
Geological identification of past tsunamis is important for risk assessment studies, especially in areas where the historical record is limited or absent. The main problem when using the geological evidence is to distinguish between tsunami and storm deposits. Both are high-energy events that may leave marine traces in coastal stratigraphic sequences. At Martinhal, SW Portugal both storm surge and tsunami deposits are present at the same site within a single stratigraphic sequence, which makes it suitable to study the differences between them, excluding variations caused by local factors.

The tsunami associated with the Lisbon earthquake of November 1st 1755 AD, had a major impact on the geomorphology and sedimentology of Martinhal. It breached the barrier and laid down an extensive sheet of sand, as described in eyewitness reports. Besides the tsunami deposit the stratigraphy of Martinhal also displays evidence for storm surges that have breached and overtopped the barrier, flooding the lowland and leaving sand layers. Both marine-derived flood deposits show similar grain size characteristics and distinctive marine foraminifera. The most important differences are the rip-up clasts and boulders exclusively found in the tsunami deposit and the landward extent of the tsunami deposit that everywhere exceeds that of the storm deposits. Identification of both depositional units was only possible using a collection of different data and extensive stratigraphical information from cores as well as trenches.  相似文献   


19.
This paper focuses on the formative processes of limestone pseudoconglomerates in the Gushan and Chaomidian Formations (Late Cambrian) of the North China Platform, Shandong Province, China. The Gushan and Chaomidian Formations consist mainly of limestone and shale (marlstone) interlayers, wackestone to packstone, grainstone and microbialite as well as numerous limestone conglomerates. Seventy‐three beds of limestone pseudoconglomerate in the Gushan and Chaomidian Formations were analysed based on clast and matrix compositions, internal fabric, sedimentary structures and bed geometry. These pseudoconglomerates are characterized by oligomictic to polymictic limestone clasts of various shapes (i.e. flat to undulatory disc, blade and sheet), marlstone and/or grainstone matrix and various internal fabrics (i.e. intact, thrusted, edgewise and disorganized), as well as transitional boundaries. Limestone pseudoconglomerates formed as a result of soft‐sediment deformation of carbonate and argillaceous interlayers at a shallow burial depth. Differential early cementation of carbonate and argillaceous sediments provided the requisite conditions for the formation of pseudoconglomerates. Initial deformation (i.e. burial fragmentation, liquefaction and injection) and subsequent mobilization and disruption of fragmented clasts are two important processes for the formation of pseudoconglomerates. Burial fragmentation resulted from mechanical rupture of cohesive carbonate mud, whereas subsequent mobilization of fragmented clasts was due to the injection of fluid materials (liquefied carbonate sand and water‐saturated argillaceous mud) under increased stress. Storm‐wave loading was the most probable deformation mechanism, as an external triggering force. Subsequent re‐orientation and rounding of clasts were probably prolonged under normal compactional stress. Eventually, disrupted clasts, along with matrix materials, were transformed into pseudoconglomerates by progressive lithification. Soft‐sediment deformation is prevalent in alternate layers of limestone and mud(marl)stone and/or grainstone, regardless of their depositional environments.  相似文献   

20.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号