首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wischmeier's soil erodibility factor K calculated for 10 surface soils in the Hornos area, S. Spain, is compared with 3 aspects of aggregate stability. A significant correlation is found with the percentage of particles < 100 μm after aggregate breakdown, which is used as a measure of the vulnerability of the soil to erosion by overland flow. No significant correlation exists with the number of water drops required to cause breakdown of the aggregates nor with the mean size of the shattered aggregates, both being aspects of the resistance of aggregates to splash erosion. Of the micromorphological and analytical soil properties explaining aggregate stability, only the clay and silt content and the number of closed voids are significantly correlated with the factor K. The aggregate stability of the investigated soils is mainly determined by soil properties inherited from the parent material; the stabilizing effect of pedological features is small.  相似文献   

2.
Rainsplash is an important component of interrill erosion. To date, few studies have critically examined the linkages between aggregate entrainment by splash and associated nutrient flux. An Oxisol was used in laboratory rainfall experiments with two different antecedent moisture contents (AMC) and ten different rainfall energy flux densities (EFD). Splash and soil organic carbon (SOC) flux increased with increased EFD regardless of initial AMC. Aggregates were not transported in proportion to their content in the original soil matrix, those of 2000–4000 μm and <105 μm were found to be the most resistant to splash. Energy required to detach 1 gC varied from a median of 1870 J for the 2000–4000 μm fraction to 120 J for the 425–850 μm fraction. Temporal variation in cumulative splash flux and carbon flux for various combinations of AMC and EFD indicated distinct patterns. Under dry AMC, splash increased during 1 h duration storms and this was explained by increased aggregate breakdown by air-slaking, decreased soil strength and increased erodibility as soil moisture increased. Wet soil runs exhibited the opposite pattern of decreased flux with time, probably indicating a complex response to limited aggregate availability, increased seal development by raindrop compaction, and transient water layer effects in drop impact craters. The formulation of mass-based SOC enrichment ratios (ER) clearly indicated preferential detachment and transport of splashed aggregates between 250 and 2000 μm. A reliance of chemical transport models on concentration-based ER values can be misleading, because it is the balance between nutrient concentration and sediment quantity that is important for soil quality and non-point source modelling.  相似文献   

3.
The effect of peat on crust strength was investigated using ten soils with organic matter levels ranging from 1-50 to 18-23 per cent. As peat content increased, the crust strength reduced. This occurred in spite of the inability of peat to increase the stability of soil aggregates. Peat reduced crust strength by acting as a mulch on the soil surface, thereby reducing breakdown of soil aggregates. Peat also formed a source of weakness on the soil, reducing crust formation. Using a factorial experiment involving a further seven soils with different levels of peat treatment, exposed to four rainfall durations and with two aggregate sizes, crust strength was described in terms of the direct effects and the interactions of these factors. Most of the crust strength values reduced with increasing peat content. For each soil, crust strength increased significantly with increasing rainfall duration. Crust strength was greater for the smaller aggregate size. The most significant interactions affecting crust strength were between soil and aggregate size, rainfall duration and aggregate size, and soil and rainfall duration in that order. These interactions were used to describe the effect of organic matter in form of peat on crust strength. For each soil and aggregate size, polynomial relationships were established to relate crust strength to total kinetic energy of rainfall.  相似文献   

4.
The soil aggregate stability is a key property of soil quality and reflects soil quality and anti‐erosion ability. The transition matrix between initial and final aggregates condition was established by modifying Niewczas and Witkowska‐Walczak's method by not considering the artificial weights and each size of aggregates fraction on the basis of three reasonable assumptions, and soil aggregate stability index (ASI) was formed through preserving each size of aggregates probability. This ASI is identical to the result by reference, and the transition matrix can be showed to evaluate the soil aggregates stability. Using the transition matrix was furthermore to analyze anti‐breaking ability of different size aggregate by reference material. We found there were different effects for each size aggregate by four methods, simulation rainfall, one cycle of wetting–drying, ten cycles of wetting–drying, and Yoder wetting–sieving. The Yoder wetting–sieving is a severe method that destructed soil aggregates. The ASI by modifying transition matrix method was used to evaluate the aggregates stability under different land utilization in Karst region in Chongqing, China. The ASI of agricultural utilization was lower than abounded cultivated land, shrub‐grass land, secondary forest land, and primeval forest land. For some selected soil properties, when SOM content was <60 g/kg, ASI increased along with the SOM increase. Once the SOM content was >60 g/kg, the ASI was almost unchanged. The sorption moisture content of air‐drying acutely affected ASI too, and the ASI increased along the sorption moisture increasing. SOM content and sorption markedly affected the preserving probability of larger aggregates such as 10–5, 5–3, 3–2, 2–1, and 1–0.5 mm size class. Although CaCO3 and clay content did not influence preserving probability of each size class of aggregates fiercely, but the influence on small aggregates was higher than that of larger aggregates. The modified transition matrix method could not only calculate soil aggregates stability index, but also analyze more parameters of aggregate experiment, and bring out the each size aggregates characteristics. Thus, the modified transition matrix method could be a better tool to understand soil quality.  相似文献   

5.
设计和研制一台大型智能控制压扭多轴加载试验机,形成一个集动静加载、扭剪、常规三轴等功能为一体的多功能土动力试验平台。该试验机具有如下特点:(1)试样尺寸大,高度可达600mm,且可根据试验需求更换大小不同的试样及相应传感器;(2)加载自由度多,可独立施加轴力、扭矩、内压、外压、孔压及相应的位移,实现5个不同物理量的独立控制,从而大大拓宽可施加的应力路径范围;(3)控制智能化,可先将拟进行的应力路径或应变路径写入程序中,试验过程中即可由计算机自动控制。测试结果表明,该试验机的控制精度能够满足土工材料试验的要求。  相似文献   

6.
The relevance of drop shape for erosivity was tested for different combinations of drop sizes and fall heights. For all test combinations together the introduction of the observed drop shape in erosivity parameters only produces minor improvements in the relation between erosivity and detachment and transport by splash. This result is attributed to the dominance of oblate shapes in high velocity conditions. Using small fall heights and low fall velocities as in many rainfall simulators and drop tests it is shown that prolate drops produce a splash detachment which is 2 to 3 times higher than that produced by drops with an oblate shape at impact. As drop production in rainulators or for aggregate stability drop tests may result in more or less uncontrolled variations of drop shape, it is concluded that in addition to other test conditions drop shape should be specified. Moreover it is noted that the erosive capability of prolate drops can explain partly the high splash erosion amounts below vegetation.  相似文献   

7.
The paper examines the relationships between soil aggregate stability, selected soil properties and land use in central Spain. Aggregate stability indices derived from three procedures were found to be significantly (p > 0.01) correlated with each other as well as with clay content, organic carbon and a range of water-soluble salts. Soils with a higher clay content have a lower aggregate stability. It appears that the presence of expandable clays has a major negative influence, although this impact is strongly modified by recent land-use history and contemporary land-management practices. Agricultural land, abandoned in the 1940s, was subsequently invaded by Cistus matorral or planted with Pinus. The most stable aggregates occur under matorral and may represent a lag of more resistant aggregates surviving past land-use-related erosional processes. Comparisons with aggregates under Pinus however suggest that hydrophobic substances from the Cistus may have increased aggregate stability. Aggregates from areas remaining in cultivation are the least resistant although the stability envelope overlaps with areas under Pinus. These differences may be related to cultivation practices whereby clay-rich subsurface horizons characterized by higher proportions of expandable clays are drawn to the surface, and to enhancement of aggregate stability under forest by fungal hyphae.  相似文献   

8.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Soil erosion, transport and deposition by water drastically affect the distribution of soil organic carbon (SOC) within a landscape. Moreover, soil redistribution may have a large impact on the exchange of carbon (C) between the pedosphere and the atmosphere. One of the large information gaps within this research domain, concerns the fate of SOC after erosion by water. According to different (mainly laboratory) studies, soil redistribution leads to aggregate breakdown, thereby exposing the contained SOC to mineralization. Our study aims to quantify the extent to which such increased mineralization occurs in a real field situation. Carbon dioxide (CO2)‐efflux was measured in the field after an important erosion event for a continuous period of 112 days. The specific situation on the field ensured that almost none of eroded SOC was exported from the field. Measurements of CO2‐efflux were done in areas with sediment deposition, as well as in comparable areas without sedimentation. Comparison of these measurements allowed the net effect of soil deposition on CO2‐efflux to be assessed. Field data were complemented by measurements on incubated, undisturbed soil core samples, in order to disentangle the contribution of environmental factors (moisture, temperature) from any erosional effect on CO2‐efflux. Results of these measurements on the field showed that CO2‐efflux was regulated by a complex interplay of different factors (mostly soil porosity, soil moisture and soil temperature). In combination with the incubation measurements, it could be concluded that the processes of erosion and transport indeed led to an increased mineralization of SOC, as a result of aggregate breakdown and exposure of previously encapsulated SOC. This effect was, however, much smaller than observed in previous laboratory studies. Moreover, it was only important in the first weeks, immediately after the erosion event. The calculated net erosional effect on CO2‐efflux represented a mere 1·6% of total SOC, originally present in the soil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Local gas pipelines provide a valuable resource to urban areas and are often forced to cover unfavourable ground conditions in order to form a serviceable network. This can force pipelines through soil, which is subjected to permanent ground displacements due to faulting and strong vibrations due to earthquakes. Due to the inseparability of faulting from earthquakes it is pertinent to examine the combined effect of dynamic vibration and shear deformation of the surrounding soil on buried pipelines and a better understanding of the factors affecting pipe response to these inputs will enable more intelligent design of future pipe networks with the intention of reducing damage inflicted on pipes in extreme events. To advance understanding of this topic, a series of model experiments were performed under 1 g conditions on instrumented 20 mm diameter acrylic prototype pipes buried in dry Toyoura sand as well as a tyre derived aggregate (TDA) backfill trench surrounded by Toyoura sand crossing a vertical fault. The apparatus setup allowed faulting and dynamic input to be applied simultaneously to the model, which revealed that the simultaneous loading reduces the bending of a pipe and that installation of a pipe in a tyre derived aggregate backfill reduces the bending moment experienced by the pipe by up to 74% for small fault displacement and low levels of acceleration.  相似文献   

11.
Two rainfall simulators of different plot sizes were used to test whether sediment in runoff could be used to measure aggregate breakdown in the surface of a cracking clay soil under rain. Plots were prepared with either levelled or furrowed surfaces. Samples of the soil surface under rain were taken from furrow ridges or levelled surfaces, and from areas of deposited sediment. These were compared with samples of sediment in runoff taken at the same times. On both furrowed and levelled plot surfaces and for both simulators, aggregate sizes were significantly finer in sediment in runoff than in samples of the soil surface taken with a spatula. No significant differences in surface aggregate size distributions were found between rainfall simulators, or between furrowed and levelled plot surfaces. Regression lines fitted to the data on size distributions of sediment or of aggregates in the soil surface showed no significant changes through time. The fitted lines showed sediment in runoff to be still significantly finer than aggregates in the soil surface after 50 min rain at 95 mm h?1, except for levelled plots under the rotating disc rainfall simulator, where extreme variability of data meant that even relatively large differences were not statistically significant. Size distributions of deposited sediment were similar to those of the surface of adjacent furrow ridges exposed to raindrop impact. This provides evidence that sampling the soil surface with a spatula gives a representative sample of the material available for rain-flow transport.  相似文献   

12.
Dynamic changes take place in the nature of sediment eroded from bare soil at low slopes by rainfall impact when there is no inflow of water at the top of the eroding slope. This relates initially to fine soil sediment not settling back onto the soil after the rainfall impact. Coupled partial differential equations describing such dynamic changes have been solved numerically for a bed of soil, bounded at its upper end, and subject to a constant rainfall rate. This solution allows prediction of the change with time and downslope distance in the concentration and settling velocity (or size) characteristics of eroding sediment, allowing critical evaluation of the assumption of space-independent sediment characteristics made in prior approximate analytical solutions of the equations involved. Following the determination of as yet unpredictable soil-related parameters in the equations, the solution was tested by comparison with experimented data on two soils of contrasting structural stability, namely a vertosol [The Australian Soil Classification (1996)] and a aridisol. Investigations included the determination of a minimum number of sediment size classes required to adequately describe the settling velocity characteristics, based on the shape of the underlying basic settling velocity characteristic, which is used to predict the dynamics of sediment deposition. The effect on the solution of observed structural breakdown in soil aggregation due to rainfall impact was investigated, leading to more accurate predictions of the settling velocity characteristics of eroded sediment. Other sources of discrepancy between theory and observation remain to be determined.  相似文献   

13.
Two methods for sampling aggregates in the soil surface under simulated rain were compared using two soil types. Results showed that aggregate size distributions obtained by spatula sampling were not significantly different from those obtained using rings buried in the soil surface, provided both were sampled to the same depth. The effect of transporting samples over a distance of 60 km was non-significant when samples were placed in bottles half-filled with rainwater and transported in an upright position. The per cent aggregates > 0.125 mm was found to be the most suitable index of aggregate stability for both soils.  相似文献   

14.
The influence of organic matter on splash detachment was investigated using soils with grass and peat treatments. The relationship between organic matter and aggregate stability to water disruption was positive for soils with grass treatment while it was negative for those with peat treatment. Organic matter from both treatments, however, reduced splash detachment by rainfall. Soils with grass did this by increasing aggregate stability while peat acted as a mulch on the soil surface. This implies that though organic matter always reduces splash detachment, different processes may be involved, depending on the form of the organic material. Because of the different processes involved, both negative and positive relationships between splash detachment and aggregate stability as reported in literature were obtained for the soils with grass and peat respectively.  相似文献   

15.
Steep erosion‐prone and vegetation‐free slopes are widespread in alpine areas and are often discussed since they have a high socio‐economic damage potential. We present an eco‐engineering approach to test whether a mycorrhizal inoculum improves the establishment of hedge brush layers and in turn soil structural stability on a steep, coarse‐grained vegetation‐free slope in the eastern Swiss Alps. We established (i) mycorrhizal and (ii) non‐mycorrhizal treated eco‐engineered research plots on a field experimental scale, covering a total area of approximately 1000 m2 on an east‐northeast (ENE) exposed slope, where many environmental parameters can be regarded as homogeneous. After a full vegetation period, we quantified soil aggregate stability, the formation of water stable aggregates and the fine‐root development. Our results illustrate that the establishment of brush layers without mycorrhizal inoculum increased aggregate stability significantly. Against our expectation and glasshouse experiments, the addition of mycorrhizal inoculum did not have a statistically significant effect after one vegetation period although it tended to increase aggregate stability. Analogously, root length density (RLD) tended to be higher at the non‐mycorrhizal treated site. Aggregate stability was significantly correlated with RLD. Studies on a bigger field experimental scale are inevitable, complement glasshouse studies and lead to a better understanding for a successful application of sustainable eco‐engineering measures in alpine environments. Based on our results and considering the fact that the response time in natural ecosystems may be slower than in laboratory approaches, we conclude that long‐term field studies are necessary to validate results gained through laboratory experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models ( 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics.

The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains.

In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow.

Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs.  相似文献   


17.
R. M. Bajracharya  R. Lal 《水文研究》1998,12(12):1927-1938
Sealing and crusting of soil surfaces have dramatic effects on water infiltration into and runoff from soils, thereby greatly influencing erosion processes. This study focused on the effect of the initial stage of crusting on inter-rill erosion processes for a crust-prone Alfisol sampled from south-central India. Soil aggregates ranging from 2·4 to 8 mm collected from ploughed (PL) and naturally vegetated (NV) treatments were subjected to rainfall simulation under laboratory conditions. Runoff from PL soil aggregates was 2–2·5 times higher, while percolation was 20–100% lower, than for NV aggregates. Soil wash and splash losses were 0·5–3 times greater for PL than for NV soil. Runoff and inter-rill erosion were significantly higher during the wet simulation run compared with the dry run. The results indicated that NV soil aggregates were more resistant to breakdown from raindrop impact and slaking, and subject to less rapid sealing, than PL soil. Total soil loss was influenced most by initial aggregate stability and the extent of seal development. Splash and wash losses of soil both increased as a result of surface sealing regardless of soil condition for short (30–60 min) rainfall durations. High drying rates resulted in the highest crust bulk densities. Increased crust strength for PL soil compared with NV soil reflected the greater susceptibility of cultivated soil to surface sealing and crusting. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
杨贵  刘汉龙  朱俊高 《地震学刊》2012,(5):535-538,551
粗粒料湿化变形特性对土石坝静力稳定有着显著影响。目前开展的三轴试验和直剪试验研究,一般只能进行干样和饱和样的试验,而对于非饱和情况研究较少。基于粗粒料不同围压下湿化变形试验研究成果开展数值模拟研究,结果表明:湿化变形的影响可以通过改变细观剪切模量和细观摩擦系数来实现;随着颗粒破碎随饱和度和围压的增加,湿化后粗粒料的强度低、内聚力降低,但摩擦角变化不大。  相似文献   

19.
Managing land to produce food, fibre or timber must have some environmental impact, the magnitude of which will depend on the cropping system and the intensity of management. Nitrogen is an indispensable input for modern agricultural systems, which not only aim to feed people but seek to sustain rural communities dependent on agriculture. In temperate regions there is a universal problem of nitrate leaching from agricultural land, and increases in nitrate concentrations in water bodies in recent years have been a cause for concern, especially the role of nitrate in the development of algal blooms. Nitrate invariably appears in drainage from agricultural land in the absence of any significant input of nitrogen as a result of the breakdown of soil humus or from aerial deposition of combined nitrogen in various forms. Where only inorganic nitrogen fertilizers are applied in amounts and at times to satisfy crop demand, they are apparently used efficiently. Where nitrate in drainage is a direct residue from applied nitrogen fertilizers, it can usually be associated with the use of excessive quantities or with the failure of a crop to achieve its expected yield. Most of the nitrate which appears in soil in autumn comes from the microbial mineralization of soil organic matter. The soil microbial population breaking down organic matter does not differentiate between soil humus or organic matter added to soil by ploughing in grass leys, forage legumes or large quantities of organic manures. Adding such organic materials to soil can lead to the release of much nitrate. Such microbial processes would be impossible to control in environmentally benign ways.  相似文献   

20.
Seasonal variation in potential water repellence has not been widely reported in the literature, and little is known of the processes that cause changes in potential water repellence. In this study, the severity and stability of potential water repellence varied seasonally from being weakly hydrophobic in July 2009 (water drop penetration time, 0.19 min; water entry potential, 0.0 cm) to severely hydrophobic (water drop penetration time, 54 min; water entry potential, 14.3 cm) in May 2009. Seasonal variation in the stability of potential water repellence was significantly correlated with cumulative rainfall, air temperature and soil water deficit, which indicated that the accumulation of water‐repellent compounds, presumably polar waxes, resulted from microbial or plant inputs to the soil. Laboratory experiments demonstrated that saturating and mixing the soil resulted in a two to three order of magnitude reduction in the stability of potential water repellence, even after oven drying at 40 °C and 60 °C. Repeated leaching resulted in sequential reduction in both the stability and severity of water repellence. The significant correlation between soil water repellence and dissolved organic carbon content of the leachate, together with pedological evidence of organic staining of ped faces in the clay subsoil indicate that seasonal rainfall leached soluble water‐repellent compounds from the topsoil. The reestablishment of water repellence after saturation and leaching required the input of new water‐repellent compounds. These findings suggest that the use of surfactants before sowing may assist to leach water‐repellent compounds from the topsoil, allowing improved infiltration and reduced runoff through the remainder of the cropping season. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号