首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study investigates the disturbance to piles and pile groups caused by multiple nearby drives of a large diameter slurry shield-driven tunnelling machine in Shanghai. The minimum distance between the slurry shield tunnel (with diameter D = 15.43 m) and the adjacent pile groups of Metro Line 3 and Yixian Elevated Road is 1 m. The nonlinear finite element (FE) software program ABAQUS was used to analyse the movement of the pile groups caused by the process of shield tunnelling. A field investigation was conducted before the multiple crossings to study the impact (movement and excess pore water pressure) on the surrounding soil and piles caused by the tunnelling process. The field investigation is divided into two sections: (i) free-field tunnelling, and (ii) tunnelling close to trial piles pre-installed in the section. For the full-scale test, tunnelling variable, including slurry pressure and grouting pressure, are adjusted during construction to reduce the disturbance during tunnelling close to pile groups supporting two elevated bridges. The FE simulation of the multiple crossings includes two steps: (a) shield tunnelling along the south bound tunnel approaching the working shaft at the western bank of the Huangpu River, and passing separately between two adjacent pile groups of each bridge; (b) return tunnel passing again between the pile groups of the two bridges along the north bound tunnel. Three different FE models are generated: (1) free-field tunnelling process, (2) tunnelling close to trial piles, and (3) multiple tunnel passes adjacent to pile groups supporting the two elevated bridges. Most of the relevant factors in tunnelling are taken into consideration in the FE models including (a) slurry pressure, (b) grouting pressure, (c) grouting material hardening, and (d) soil-pile interaction.  相似文献   

2.
Three-dimensional (3D) numerical analyses have been carried out to study the behaviour of a single pile to adjacent tunnelling in the lateral direction of the pile. The numerical analyses have included comparisons between the current study, previous elastic solutions and advanced 3D elasto-plastic analyses. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the axial force distributions on the pile, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the pile settlement. In particular, the shear stress transfer mechanism along the pile related to tunnel advancement has been analysed by using interface elements allowing soil slip. It has been found that existing solutions may not accurately estimate the pile behaviour since several key issues are not included. Due to changes in the relative shear displacement between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops at the upper part of the pile, while upward shear stress is mobilised at the lower part of the pile, resulting in a compressive force on the pile. A maximum compressive force of about 0.25–0.52Pa was developed on the pile, solely due to tunnelling, depending on the pile tip locations relative to the tunnel position, where Pa is the service pile loading prior to tunnelling. The majority of the axial force on the pile developed within ±2D in the transverse direction (behind and ahead of piles) relative to the pile position, where D is the tunnel diameter. In addition, mobilisation of shear strength at the pile–soil interface was found to be a key factor governing pile–soil–tunnelling interaction. The reduction of apparent allowable pile capacity due to tunnelling was dependent on the pile location relative to the tunnel position. Some insights into the pile behaviour in tunnelling obtained from the numerical analyses will be reported and discussed.  相似文献   

3.
马少坤  WONG K S  吕虎  吴宏伟  赵乃峰 《岩土力学》2013,34(11):3055-3060
在膨胀土地基中进行隧道对群桩影响的三维离心模型试验研究,目标地层损失比为2%,着重研究引起的地基沉降槽、桩的附加沉降、附加弯矩、轴力的变化规律。试验得出:隧道开挖沉降槽空间效应明显;隧道开挖从-0.75D至1.25D时,桩附加沉降呈线性增长,隧道开挖至1.25D以后,桩依然沉降明显。前桩与后桩沉降值不同,桩帽会出现倾斜;前桩上部出现负附加弯矩而下部出现正附加弯矩,而后桩仅在下部出现正附加弯矩;前桩附加弯矩最大值出现在隧道轴线附近,且比后桩附加弯矩大得多;前桩附加轴力随着隧道的开挖而增加,且每步最大值在隧道轴线附近。后桩的轴力也随隧道的开挖而增加,但每步最大值出现在桩顶附近。  相似文献   

4.
A large scale model test of a 1 × 2 pile group was conducted in silts to investigate its behavior under eccentric lateral loading. The model pile group consisted of two well instrumented steel piles and was installed in a large soil tank with a close spacing of three-pile diameters on centers. The test results revealed that the eccentricity of lateral loads had limited effect on the overall performances of the 1 × 2 pile group, but significantly contributed to the unevenness of internal forces of the individual piles. The coupling effect between the lateral deflection and torque gave rise to the substantial increase in the torsional resistance of individual piles within the group, comparing to that of a torsionally loaded single pile. The contribution provided by the torsional resistances of individual piles in resisting the external torque continually decreased when the applied lateral load increased. In addition, a three-dimensional finite-element analysis for the pile group was performed and the simulated response was found to be in good agreement with the measured test results. Based on the same model, more cases with different loading conditions were further analyzed. It could be concluded from the analyses that the layout of individual piles within the group obviously affected the behavior of the 1 × 2 pile group under eccentric lateral loads.  相似文献   

5.
The physicochemical processes that affect acid mine drainage (AMD) in unsaturated waste rock piles and the capabilities of small-scale laboratory experiments to predict AMD from waste rock are not well understood. An integrated laboratory and field study to measure and compare low sulfide waste rock and drainage characteristics at various scales has been initiated. This paper describes the design, construction and instrumentation of three field-scale experimental waste rock piles (test piles), and six active zone lysimeters at the Diavik diamond mine in the Northwest Territories, Canada. The test piles are comprised of granitic and sulfide-bearing metasedimentary waste rock excavated during open pit mining operations. One test pile contains waste rock with a target S content of <0.04 wt.% S; the second test pile contains waste rock with a target S content of >0.08 wt.% S; and the third test pile contains the higher sulfide waste rock (>0.08 wt.% S) and was re-sloped and capped with a low permeability till layer and a low sulfide waste rock cover. The first two test piles are approximately 15 m high with bases of 50 m by 60 m, and the re-sloped test pile has a larger base of 80 m by 125 m. Instrumentation was selected to measure matrix flow, geochemistry of pore water and drainage, gas-phase O2 concentration, temperature evolution, microbiological populations, waste rock permeability to air, and thermal conductivity, as well as to resolve mass and flow balances. Instrument locations were selected to characterize coupled physicochemical processes at multiple scales and the evolution of those processes over time. Instruments were installed at a density such that the number of instruments that survived construction (40% to >80% by instrument type) was sufficient to allow adequate characterization of the physicochemical processes occurring at various scales in the test piles.  相似文献   

6.
The tetrapod jacket foundations that are always used to support offshore wind turbines have been investigated primarily in laboratory experiments. In this study, the ultimate lateral soil resistance on this type of foundation was investigated using the finite element method and the analytical upper bound plasticity method. The numerical results show good agreement with the theoretical upper bound solutions under the same pile spacings (S) and soil-pile adhesion factors (α). Three distinct failure mechanisms (mechanisms A, B and C) were established in terms of different pile spacings. The ultimate lateral pressure was subsequently determined using numerical analyses with consideration of the loading direction. The most critical loading direction angles (θ) vary with the soil-pile adhesion factors, and are θ = 0 for α = 1 and θ = π/4 for α = 0. Selected empirical equations were proposed to predict the ultimate lateral bearing capacity for engineering practice, considering the pile spacing, soil-pile adhesion and loading direction.  相似文献   

7.
The influence of vertical loads on the lateral response of group piles installed in sandy soil and connected together by a concrete cap is studied through finite elements analyses. The analyses focus on the five piles in the middle row of 3 × 5 pile groups. The vertical load is applied by enforcing a vertical displacement equivalent to 2% of the pile diameter through the pile cap prior to the application of the lateral loads. The results have shown that the lateral resistance of the leading pile (pile 1) does not appear to vary considerably with the vertical load. However, the vertical load leads to 23%, 36%, 64%, and 82% increase in the lateral resistance of piles 2–5, respectively. The increase in the lateral pressures in the sand deposit is the major driving factor to contribute the change in the lateral resistance of piles, depending on the position of the pile in the group. The distribution of lateral loads among piles in the group tends to be more uniform when vertical loads were considered leading to a more economical pile foundation design.  相似文献   

8.
靳军伟  杨敏  邓友生  刘晨晖 《岩土力学》2015,36(Z1):241-246
基于砂土中隧道开挖引起的土体竖向位移经验公式,分析隧道开挖对邻近桩基础的竖向影响。采用两阶段计算方法,将邻近桩基础视为竖向被动桩,依据砂土中隧道开挖引起地表及地表以下土体产生的沉降槽,考虑桩土相互作用的非线性,得到砂土中隧道开挖对邻近桩基础轴力影响的简化计算方法,并与土工离心试验结果进行对比,验证了该方法的合理性。在研究过程中,分析了隧道覆盖层厚度、隧道直径、隧道与桩之间的距离、隧道土体损失率、桩长、桩径等因素。研究结果表明,桩身轴力随着覆盖层厚度的增加而减小,随隧道直径和土体损失率的增大而增加;隧道与桩之间距离为2.5倍隧道直径时对轴力的影响最大;随着桩长、桩径的增加,桩身轴力逐渐增加。  相似文献   

9.
Three large-scale instrumented waste rock piles were constructed at the Diavik Diamond Mine in the Northwest Territories, Canada. These experimental waste rock piles (test piles) are 15 m high and are part of an integrated field and laboratory research program to characterize and compare low-sulfide waste rock and drainage at various scales. During test pile construction, samples of the <50 mm fraction of waste rock were collected from two types of waste rock that are segregated during mining operations based on S content. The samples were analyzed for S content and particle size distribution. One test pile contained waste rock with an average of 0.035 wt.% S in the <50 mm fraction, within the operational S target of <0.04 wt.% S for the lower S waste rock type. The second test pile contained waste rock with an average of 0.053 wt.% S in the <50 mm fraction, lower than the operational S target of >0.08 wt.% S for the higher S waste rock type. The third test pile has a low permeability till layer and a low sulfide waste rock thermal layer covering a core of waste rock with average 0.082 wt.% S in the <50 mm fraction, which is within the operational S target of >0.08 wt.% S for the higher S waste rock. Particle size distributions for the lower and higher S waste rock are similar, but the higher S waste rock has a higher proportion of fine-grained particles. Sulfur determinations for discrete particle sizes of the <50 mm fraction illustrate higher S concentrations in smaller particles for both the lower S waste rock and the higher S waste rock. Similarly, S concentrations calculated for the >10 m scale, from composite blast hole cuttings, are lower than those calculated for the <50 mm scale. Acid–base accounting using standard methods and site-specific mineralogical information was used to calculate the ratio of neutralization potential to acid generating potential. A comparison of calculation approaches to pH and alkalinity data from humidity cell and test pile effluent suggest that ratios are very sensitive to the calculation method. The preferred calculation method was selected by comparing calculation results to pH and alkalinity data from humidity cell effluent collected over 95 weeks and test pile effluent collected over five field seasons. The preferred acid–base accounting values were obtained by calculating the average neutralization potential divided by the average acid potential of a sample set. This approach indicates that waste rock with >0.05 wt.% S is of uncertain acid-generating potential and effluent data indicate this waste rock generates acidic effluent; whereas lower S waste rock does not produce acidic effluent, consistent with the acid–base accounting predictions.  相似文献   

10.
Pollen analysis from a peat-bog sequence located at 50° 24′ S, 72° 42′ W in the Subantarctic forest – Patagonian steppe ecotone gives information about vegetation and climate changes in Southwestern Patagonia since the glacier retreat. After 11 000 cal yr BP a change from grass steppe to open Nothofagus forest indicates that climatic conditions became rapidly warmer. Development of a closed Nothofagus forest between 5800 and 3200 cal yr BP is interpreted as precipitation increase. During the late Holocene colder climate conditions prevail in response to Neoglacial events. After ca 3000 cal yr BP Nothofagus forest became opener, and after 800 cal yr BP grass steppe expanded. Changes in the forest-steppe ecotone composition as well as the ecotone longitudinal shifts suggest changes in temperature and precipitation. Present-day mean annual precipitation between 300 and 400 mm is associated with grass steppe, and 500–600 mm with a greater forest representation. During the last century, low presence of forest in the area may be related to European settlement and repeated flooding caused by periodic advances of Perito Moreno glacier.  相似文献   

11.
In this paper, a numerical simulation method for evaluating tunnelling-induced ground movement is presented. The method involves discrete element simulation of TBM slurry shield advancement and considers explicitly soil excavation from the face, effects of varying face support pressure, and the influence of tunnel cover depth. For the cases studied, it is found that for tunnel cover depths (C/D) between 0.7 and 2.1, ground deformations inducing by the tunnelling can be controlled within a certain extent and tunnel face stability can ensured, provided the support pressure ratio (N) lies between 0.8 and 1.5. The proposed method is reasonably benefited to modeling the face stability in shield-driven tunnels in soft soils.  相似文献   

12.
Three large-scale experimental waste rock piles (test piles) were constructed and instrumented at the Diavik Diamond Mine in the Northwest Territories, Canada, as part of an integrated field and laboratory study to measure and compare physical and geochemical characteristics of experimental, low sulfide waste rock piles at various scales. This paper describes the geochemical response during the first season from a test pile containing 0.053 wt.% S. Bulk drainage chemistry was measured at two sampling points for pH, Eh, alkalinity, dissolved cations and anions, and nutrients. The geochemical equilibrium model MINTEQA2 was used to interpret potential mineral solubility controls on water chemistry. The geochemical response characterizes the initial flushing response of blasting residues and oxidation products derived from sulfides in waste rock exposed to the atmosphere for less than 1 year. Sulfate concentrations reached 2000 mg L−1 when ambient temperatures were >10 °C, and decreased as ambient temperatures declined to <0 °C. The pH decreased to <5, concomitant with an alkalinity minimum of <1 mg L−1 (as total CaCO3), suggesting all available alkalinity is consumed by acid-neutralizing reactions. Concentrations of Al and Fe were <0.36 and <0.11 mg L−1, respectively. Trends of pH and alkalinity and the calculated saturation indices for Al and Fe (oxy)hydroxides suggest that dissolution of Al and Fe (oxy)hydroxide phases buffers the pH. The effluent water showed increased concentrations of dissolved Mn (<13 mg L−1), Ni (<7.0 mg L−1), Co (<1.5 mg L−1), Zn (<0.5 mg L−1), Cd (<0.008 mg L−1) and Cu (<0.05 mg L−1) as ambient temperatures increased. Manganese is released by aluminosilicate weathering, Ni and Co by pyrrhotite [Fe1−xS] oxidation, Zn and Cd by sphalerite oxidation, and Cu by chalcopyrite [CuFeS2] oxidation. No dissolved metals appear to have discrete secondary mineral controls. Changes in SO4, pH and metal concentrations indicate sulfide oxidation is occurring and effluent concentrations are influenced by ambient temperatures and, possibly, increasing flow path lengths that transport reaction products from previously unflushed waste rock.  相似文献   

13.
The tunnel inclination angle (δ) generally exists in urban and cross-river (sea) tunnels; hence, its effect should be considered in the stability analysis of a tunnel face. However, the influence of this tunnel inclination angle is rarely studied. In this paper, considering the effects of the tunnel inclination angle and the tunneling length (L), the optimal upper-bound solutions of the active and passive failure pressures were obtained using sequential quadratic programming (SQP) based on the upper-bound limit analysis. The effects of the dimensionless parameters on the pressures and failure modes were investigated. The results show that the tunnel inclination angle δ and the dimensionless parameter L/D (D is the section diameter of the tunnel) significantly affect active and passive stabilities. The difference in the results between δ = −10° and δ = 10° is mostly greater than 10% and reaches 80% when the internal friction angle (φ) is large. When the value of δ is zero, L/D does not affect on the result. The maximum difference in the results between L/D = 0 and L/D = 5 are 92.5% (passive failure) and 36.3% (active failure). For the active failure mode, with increasing of φ, the curves, which have δ values of −10°, 0° and 10°, intersect at a particular point when φ reaches a specific value.  相似文献   

14.
李雪  周顺华  王培鑫  李晓龙 《岩土力学》2015,36(Z1):235-240
针对饱和砂土地区盾构隧道超近接高铁桥墩摩擦桩的工程问题,采用钻孔灌注桩及高压旋喷桩组合隔断隧桩间位移。分别对钻孔灌注桩、高压旋喷桩及盾构上下行线近接高铁桥梁桩基引起的高铁桩基的变形及变位开展现场试验,对现场实测数据及规律进行分析。结果表明,钻孔灌注桩施工使高铁桥墩产生沉降,占施工过程最大沉降量的 75%~125%;高压旋喷桩施工导致桥墩产生隆起,占施工过程最大沉降量的-50%,旋喷桩施工完成后将持续一段时间;盾构施工对高铁桥墩竖向变形产生影响,距离高铁桩基越近影响越大,同时累计沉降跟盾构施工控制有较大关系。  相似文献   

15.
Recently, 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) were separated from 5-methyl brGDGTs, which are used in brGDGT-based proxies. Here we analyzed brGDGTs in 27 soil samples along the 400 mm isoline of mean annual precipitation in China by using tandem 2D liquid chromatography. The fractional abundance of 6-methyl brGDGTs showed a positive correlation with soil pH, while that of 5-methyl brGDGTs decreased with increasing soil pH. The abundance ratio of 6-/5-methyl brGDGTs, namely the isomerization of branched tetraethers (IBT), was calculated. The correlation of IBT with pH (pH = 6.33  1.28 × IBT; R2 0.89; root mean squared error, RMSE, 0.24) was much stronger than that of the traditionally used cyclization index of branched tetraethers (CBT) with pH (R2 0.52; RMSE 0.49) and comparable with that of CBT′ with pH (R2 0.88; RMSE 0.25). Compiling all available data from 319 soil samples resulted in a global calibration: pH = 6.53  1.55 × IBT (R2 0.72; RMSE 0.65), which has a better correlation than the CBT5ME-pH proxy (R2 0.63; RMSE 0.78), but a weaker correlation than the CBT′-pH proxy (R2 0.85; RMSE 0.52). Our result suggests that the IBT is a promising indicator for soil pH, particularly in cases when some compounds in the CBT′ index cannot be determined.  相似文献   

16.
Laboratory and numerical experiments simulating the heat transfer and flow structure of thermochemical mantle plumes provide insights into the mechanisms of plume eruption onto the surface depending on the relative thermal power of plumes Ka = N/N1, where N and N1 are the heat transferred from the plume base to the plume conduit and the heat transferred from the plume conduit to the surrounding mantle, respectively, under steady thermal conduction. There are three main types of plumes according to the Ka criterion: (i) plumes with low thermal power (Ka < 1.15), which fail to reach the surface, (ii) plumes with intermediate thermal power (1.15 < Ka < 1.9), which occur beneath cratons and transport melts from depths below 150 km, where diamond is stable (diamondiferous plumes), and (iii) plumes with a mushroom-shaped head (1.9 < Ka < 10), which are responsible for large intrusive bodies, including batholiths. The volume of erupted melt and the depth from which the melt is transported to the surface are estimated for plumes of types (ii) and (iii). The relationship between the plume head area (along with the plume head diameter) and the relative thermal power is obtained. The relationship between the thickness of the block above the plume head and the relative thermal power is derived. On the basis of the results obtained, the geodynamic-regime diagram of thermochemical mantle plumes, including the plumes with Ka > 10, has been constructed.  相似文献   

17.
A field experiment is being carried out at the Diavik diamond mine in northern Canada to investigate the influence of unsaturated flow behavior on the quality of drainage from mine waste rock piles in a region of continuous permafrost. This paper is part of a series describing processes affecting the weathering of waste rock and transport of reaction products at this site; here the focus is on unsaturated water flow and its role in mass loading. Two 15 m-high instrumented test piles have been built on 60 m by 50 m collection systems, each consisting of lysimeters and a large impermeable high-density polyethylene (HDPE) liner. Collection lysimeters are installed nearby to investigate infiltration in the upper 2 m of the waste rock. Porosity, water retention curves, and hydraulic conductivity functions are estimated from field measurements and for samples ranging in size from 200 cm3 to 16 m3. Net infiltration in 2007 is estimated to have been 37% of the rainfall for mean annual rainfall conditions. Early-season infiltration freezes and is remobilized as the waste rock thaws. Wetting fronts migrate at rates of 0.2–0.4 m d−1 in response to common rainfall events and up to 5 m d−1 in response to intense rainfall. Pore water and non-reactive solutes travel at rates of <10−2 to 3 × 10−2 m d−1 in response to common rainfall events and up to 0.7 m d−1 in response to intense rainfall. Time-varying SO4 mass loading from the base of the test piles is dictated primarily by the flow behavior, rather than by changes in solute concentrations.  相似文献   

18.
Human impacts have been severe on Icelandic soils and vegetation. In order to assess human impact on soils soil quality, soil organic C (SOC), soil bulk density (BD), soil moisture content (SMC), soil mass, and SOC sequestration were measured from two Histosol cores in West Iceland. The cores cover a period from around 665 BC to present, capturing the initial human settlement of Iceland in AD 871. Tephrochronology allowed for a reliable correlation and comparison between the two cores. The initial settlement had profound impacts on the soil quality, causing decreased SOC concentration and SMC, and increased vegetation degradation, soil exposure, eolian deposition, and BD. The total SOC pool was 34.6 kg C m2 at one of the sites, of which 60.1% was formed during historic times, driven by increased soil mass deposition from surrounding eroded areas. The SOC pool was 43.7 kg C m2 at the other site, of which 31.4% was formed during historic time, constrained by water cycling and decomposition.  相似文献   

19.
《Earth》2007,80(1-2):75-109
The soil's resistance to concentrated flow erosion is an important factor for predicting rill and (ephemeral) gully erosion rates. While it is often treated as a calibration parameter in process-based soil erosion models, global change studies require the estimation of erosion resistance from measurable soil properties. Several laboratory and field experiments have been conducted to determine the erosion resistance of various types of soils, but no attempts have been made hitherto to summarize all these data and to explore them for general trends. In this study, all available data on the resistance of topsoils to concentrated flow erosion in terms of channel erodibility (Kc) and critical shear stress (τcr) has been collected together with all soil and environmental properties reported in literature to affect the soil erosion resistance. Reported Kc values for cropland topsoils range between 0.002 10 3 s m 1 and 250 10 3 s m 1 (n = 470), whereas τcr values range between 0 and 15 Pa (n = 522). It is demonstrated that so far, the heterogeneity of measurement methods, the lack of standardized definitions and the shortcomings of the flow shear stress model hamper the comparability of soil erosion resistance values from different datasets. Nevertheless, combining Kc and τcr data from different datasets, a general soil erosion resistance ranking for different soil textures can be proposed. The compiled dataset also reveals that tillage practices clearly affect Kc (Kc for conventional tillage > Kc for reduced tillage > Kc for no tillage) but not τcr.It was concluded that Kc and τcr are not related to each other and that soil and macro-environmental properties affecting the foremost do not necessarily affect the latter as well and vise versa. Often Kc seems to be a more appropriate parameter than τcr to represent the differences in soil erosion resistance under various soil and environmental conditions (e.g. bulk density, moisture content, consolidation, tillage). The two parameters represent different quantities and are therefore both needed to characterize the soil's resistance to concentrated flow erosion.  相似文献   

20.
通过对某高速铁路特大桥群桩基础进行三维非线性有限元分析,并结合现场试验得出的规律进行相应的对比分析,研究了软土地层桥梁群桩基础桩身轴力、桩侧摩阻力、基底土体附加应力、孔隙水压力分布、超孔隙水压力消散和群桩基础荷载沉降规律。计算结果表明,基桩所承受的轴力,角桩>边桩>中心桩,角桩和边桩的轴力沿桩身减小的幅度较大,而中心桩的轴力沿桩身减小的幅度稍小;各基桩桩侧摩阻力的发挥情况,侧摩阻力值总体上呈角桩>边桩>中心桩,相对滑移量基本呈上大下小的形态,即桩身上部桩-土之间产生的相对滑移量较中下部要大;外荷载作用下产生的土体附加应力和超孔隙水压力主要集中在承台底以下土体的一定范围内,其衰减梯度沿深度方向逐渐降低,随着固结时间的延长,群桩基础沉降达到稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号