首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A stress plasticity solution is proposed for evaluating the gravitational and dynamic active earth pressures on cantilever retaining walls with long heel. The solution takes into account the friction angle of the soil, wall roughness, backfill inclination and horizontal and vertical seismic accelerations. It is validated by means of the comparison with both traditional limit equilibrium methods (e.g. Mononobe–Okabe equations) and static and pseudostatic numerical FLAC analyses. For numerical analyses the soil is modelled as an elasto-plastic non-dilatant medium obeying the Mohr–Coulomb yield criterion, while the wall is elastic. The solutions for the horizontal and vertical seismic coefficients are proposed, which allow one to determine the intensity of the active thrust and its inclination δ with respect to the horizontal. It is demonstrated that the latter also depends on the soil friction angle φ. The inclination in seismic conditions δE is greater than the one in static conditions, δS, usually adopted in both cases. As a matter of fact, since wall stability conditions improve with the increase of inclination δ, the present method gives solutions that are less onerous than traditional ones, producing less conservative wall designs. Finally pseudostatic results are compared with proper dynamic analyses (by FLAC code) performed utilising four Italian accelerometric time-histories as input ground motion.  相似文献   

3.
Under the action of Rayleigh waves, pile head is easy to rotate with a concrete pile cap, and pure fixed-head condition is rarely achieved, which is a common phenomenon for it usually occurs on the precast piles with insufficient anchorage. In addition, the propagation characteristics of Rayleigh wave have been changed significantly due to the existence of capillary pressure and the coupling between phases in unsaturated soil, which significantly affects the pile-soil interaction. In order to study the above problems, a coupled vibration model of unsaturated soil–pile system subjected to Rayleigh waves is established on the basis that the pile cap is equivalent to a rigid mass block. Meanwhile, the soil constitution is simplified to linear-elastic and small deformations are assumed to occur during the vibration phase of soil–pile system. Then, the horizontal dynamic response of a homogeneous free-field unsaturated soil caused by propagating Rayleigh waves is obtained by using operator decomposition theory and variable separation method. The dynamic equilibrium equation of a pile is established by using the dynamic Winkler model and the Timoshenko beam theory, and the analytical solutions of the horizontal displacement, rotation angle, bending moment and shear force of pile body are derived according to the boundary conditions of flexible constraint of pile top. Based on the present solutions, the rationality of the proposed model is verified by comparing with the previous research results. Through parametric study, the influence of rotational stiffness and yield bending moment of pile top on the horizontal dynamic characteristics of Rayleigh waves induced pile is investigated in detailed. The analysis results can be utilized for the seismic design of pile foundation under Rayleigh waves.  相似文献   

4.
基于黏弹性人工边界,建立上部结构-桩-土的共同作用三维有限元模型,分析地震作用下预应力混凝土管桩的运动响应特性。分别针对预应力混凝土管桩的桩径、双层软硬土剪切波速比值、上覆土层厚度、上部结构荷载等影响因素进行数值计算。参数分析表明:在地震作用下,桩径的增大会导致桩身整体弯矩相应增加,特别是桩身土层分界面处增大明显;软硬土层剪切波速比及上覆土层厚度的增加,引起土层分界面处桩身峰值弯矩增加;固定桩头条件下,桩头与桩身软硬土层分界面处均会产生较大的运动弯矩;上部结构的惯性荷载对固定桩头的内力有着较大影响,对桩身深处段弯矩影响较小。本文研究结论可为预应力混凝土管桩抗震设计提供有益的理论参考。  相似文献   

5.
The objectives of this paper are to show practically: (1) the validation of a proposed three-dimensional effective stress analysis for the pile foundations, and (2) the effectiveness of remedial deposits on pile stresses under liquefaction by making comparisons between the results of centrifuge tests and those of the proposed analysis. Two foundation models supported by end-bending piles were studied with improved and unimproved deposits. There exists a good consistency between the numerical and experimental results for excess pore water-pressure ratios ranging from 0 to about 0·9. From the numerical results, the bending moment at the pile top with the improved deposit is about 50 per cent lower than that with the unimproved deposit. However, it was found that the smaller the bending moment develops in the pile with the improved deposit, the larger the compressive and/or tensional axial stresses in the pile. This is due to the predominant excitation of rocking vibration of the foundation. From the analytical and experimental results, it has been found that the remedial method can be a variable means to protect piles from soil liquefaction hazards. However, both axial stress and bending moment produced in piles should be considered in assessing the liquefied seismic capacity of group pile-foundation–structural systems with improved soil deposits. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic response of an elastic continuously nonhomogeneous soil layer over bedrock retained by a pair of rigid cantilever walls to a horizontal seismic motion and the associated seismic pressure acting on these walls are determined analytically–numerically. The soil non-homogeneity is described by a shear modulus increasing nonlinearly with depth. The problem is solved in the frequency domain under conditions of plane strain and its exact solution is obtained analytically. This is accomplished with the aid of Fourier series along the horizontal direction and solution of the resulting system of two ordinary differential equations with variable coefficients by the method of Frobenius in power series. Due to the complexity of the various analytical expressions, the final results are determined numerically. These results include seismic pressures, resultant horizontal forces and bending moments acting on the walls. The solution of the problem involving a single retaining wall can be obtained as a special case by assuming the distance between the two walls to be very large. Results are presented in terms of numerical values and graphs using suitable dimensionless quantities. The effect of soil non-homogeneity on the system response is assessed through comparisons for typical sets of the parameters involved.  相似文献   

7.
地铁车站多采用基于地下连续墙(简称:地连墙)的明挖施工方法,施工后地连墙作为永久结构与车站共同受力。在车站结构抗震分析中,考虑到地连墙可能对结构抗震的有利作用,出于安全储备考虑通常忽略地连墙的存在,但地连墙对车站结构地震响应的影响规律和机理仍有待深入研究。以某典型两层三跨地铁车站结构为对象,基于近场波动有限元方法并结合黏弹性人工边界条件,开展有无地连墙情况车站结构地震响应特性对比研究,揭示不同场地条件下地连墙对车站结构地震响应的影响规律,阐明地连墙的影响机理。研究结果表明:地连墙具有减小车站结构总体层间位移效应,有利于侧墙和底层中柱抗震,但同时放大了顶底板与侧墙连接处的弯矩和正应力;地连墙对结构顶层中柱端部及中跨中板板端的内力和正应力的影响与场地条件相关,坚硬和中硬场地条件下具有减小效应,软弱场地下略有增大作用。上述结构响应规律的原因可归结为地连墙增加了结构侧墙刚度,降低了结构整体侧向变形,但限制了侧墙的弯曲变形,导致结构顶底板与侧墙交接处的弯曲变形和内力增大。  相似文献   

8.
基于u-p有限元公式模拟饱和砂土中水和土颗粒完全耦合效应,建立液化侧向流场地群桩动力反应分析的三维数值模型。模型中,砂土采用多屈服面弹塑性本构模型模拟、黏土采用多屈服面运动塑性模型模拟,群桩在计算过程中保持线弹性状态;采用20节点的六面体单元和考虑孔压效应的20-8节点分别划分黏土层和饱和砂层;选用剪切梁边界处理计算域的人工边界,模拟地震过程中土层的剪切效应;应用瑞利阻尼考虑体系的阻尼效应。随后对比分析2×2群桩中各单桩的地震反应规律,结果表明,各单桩的弯矩、位移时程规律基本一致,峰值弯矩及峰值位移出现时刻滞后于输入加速度峰值时刻,上坡向桩的弯矩和位移峰值大于下坡向的桩的反应值。接着通过改变桩间距研究群桩效应,随着桩间距增加,群桩中各单桩的弯矩最大值均出现在土层分界处,且各单桩的弯矩、桩顶位移逐渐增大。最后给出液化侧向流场地群桩效应的基本原因,得出该类场地群桩抗震设计的基本认识。  相似文献   

9.
为研究强震区跨断层桥梁桩基非线性动力相互作用特性,依托海文大桥实体工程,利用MIDAS/GTS有限元软件,建立了桩-土-断层相互作用模型,分析0.20~0.60g地震动强度下断层上下盘桩基加速度响应、桩顶水平位移、桩身弯矩以及桩身剪力响应情况。结果表明:覆盖层土体对桩身加速度放大作用明显,且随着输入地震动强度的增大,放大作用逐渐减弱;覆盖层对地震波的滤波作用显著,随着输入地震动强度的增大,滤波作用逐渐减弱;上盘桩基达到桩顶峰值加速度的时刻滞后于下盘;随着输入地震动强度的增大,上、下盘桩的桩顶产生的永久位移和水平位移峰值逐渐变大,上盘桩顶产生的永久位移和桩顶峰值位移均大于下盘,产生显著的"上盘效应";不同强度地震动作用下,断层上、下盘桩基弯矩均在上部土层界面处达到峰值,剪力均在基岩面处达到峰值,下盘桩基弯矩和剪力峰值大于上盘桩基,呈现出显著的"下盘效应"。在桥梁桩基抗震设计时,应着重考虑断层上、下盘桩基的差异和不同强度地震作用对桩基承载特性的影响。  相似文献   

10.
The paper studies the performance of a typical overpass bridge, with continuous deck and monolithic pier-deck connections, subjected to strike-slip faulting. A three-dimensional (3D) finite element (FE) model of the entire bridge–foundation–abutment–soil system is developed, accounting for soil, structure and geometric nonlinearities. Soil behaviour is simulated with a thoroughly validated strain softening constitutive model. The concrete damaged plasticity (CDP) model is implemented for piers, accounting for the interaction between axial force N , bending moment M , shear force Q and torsion T (NMQT ); the model is validated against experimental results from the literature. The location of the fault rupture is parametrically investigated, confirming the vulnerability of indeterminate structural systems to large tectonic deformation. The deck is shown to sustain both in-plane and out-of-plane bending moments, as well as torsion; the piers are subjected to biaxial bending, shear and torsion. The response is highly dependent on the location of the fault rupture, emphasizing the need to develop cost-effective modelling techniques. Four such techniques are developed (with and without decoupling) and comparatively assessed using the detailed 3D FE model as benchmark. The best prediction is achieved by a coupled model, which includes the bridge superstructure, detailed 3D modelling of the soil-foundation system only for the pier directly affected by the fault, and nonlinear springs representing the foundations of all other piers. The proposed technique offers a computationally efficient means to parametrically analyse long multispan bridges subjected to faulting, for which full 3D FE modelling is impractical.  相似文献   

11.
假定软土地区海底沉管隧道地基土为Kelvin模型,车辆荷载是随时间变化的波动荷载形式,引入黏弹性地基梁模型,利用模态叠加法给出三种情况下沉管隧道的竖向位移、弯矩和地基反力的解答。结合天津海河沉管隧道工程实例,分析车辆速度、地基土模量对沉管隧道竖向位移及弯矩的影响。研究结果表明:车辆荷载引起的管段中点振动振幅达5mm左右,振动周期为0.25s;引起的管段中点弯矩为15 500kN·m左右,且车速越大,管段振动一个周期所需时间越短,振动越剧烈,但对振动幅度及弯矩影响不大;地基土模量越大,振动幅度和弯矩越小,但对周期影响不大。  相似文献   

12.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

13.
A key issue in the design of pile-supported structures on sloping ground is soil–pile interaction, which becomes more complicated in case of dynamic loading. This study aimed to evaluate the effect of slope on the dynamic behavior of pile-supported structures by performing a series of centrifuge tests. Three models were prepared by varying the slope and soil density of dry sand grounds. The mass supported on 3 by 3 group piles was shaken applying sinusoidal wave with various amplitudes. Test results showed that the location of maximum values and distribution shape of the bending moment below the ground surface varied noticeably with the pile position in the slope case. The relationship between the soil resistance and pile deflection (pyp loops) was carefully evaluated by applying the piecewise cubic spline method to fit the measured bending moment curves along piles. It was found that the shape of the pyp loops was irregular due to the effect of slope, and immensely influenced by the movement of the unstable zone. In addition, the effect of the pile group in the horizontal case was evaluated by comparing with the previously suggested curves that represent the relationship between the soil resistance and pile–soil relative displacement (py curves) to propose the multiplier coefficients.  相似文献   

14.
为了研究开挖工序以及围护结构作为永久结构在明挖车站的抗震设计校核中的作用,基于以灌注桩作为支挡结构的郑州市某明挖结构地铁站,采用Plaxis2D建立二层单柱双跨矩形框架式有限元模型,采取硬化土本构,建立考虑分步开挖、和不考虑开挖的模型,进行有无围护墙及不同墙厚抗震验算.研究结果表明:侧墙作为主要抗侧力构件,在地震荷载作...  相似文献   

15.
为了研究强震区桥梁跨活动断层时,桩基在地震中的动力响应,以海文大桥为工程背景,利用Midas GTS有限元软件建立其强震区桩-海床岩土体-断层耦合作用的数值模型,研究不同强度(0.20g~0.60g)的50年超越概率为10%的地震波(后文简称5010地震波)作用下,桥梁桩基加速度、位移、弯矩及剪力的动力时程响应特性。结果表明:上部大厚度松散土体对桩身加速度有放大及滤波作用,而基岩对桩身加速度几乎不产生作用;断层上、下盘桩基础的桩顶水平位移随输入地震动强度的增大而增大,但达到振幅的时刻一致;上、下盘桩基础桩顶竖向位移时程响应都在50 s以后产生永久沉降;桩身最大弯矩截面处时程响应均在40 s以后产生永久弯矩;应重点考虑上部覆盖层软硬土体界面和基岩界面的抗弯承载力设计,及桩顶和基岩面附近的抗剪承载力设计;上盘桩基础按桩身加速度、弯矩、桩顶水平位移等动参数控制设计,下盘桩基础按动剪应力控制设计。  相似文献   

16.
Observations of pile foundation performance during previous earthquakes have shown that pile failure has been caused by lateral ground movements resulting from soil liquefaction. The recognition that lateral ground movements may play a critical role in pile performance during an earthquake has important implications for design and risk assessment, and requires that analytical models be devised to evaluate these potential problems.In this paper, parametric studies were conducted to estimate the maximum bending moments induced in piles subjected to lateral ground displacement. The results are summarized in charts using dimensionless parameters.The analyses reveal that the existence of a nonliquefiable layer at the ground surface can affect significantly the maximum bending moment of the pile. When a relatively thick nonliquefiable layer exists above a liquefiable layer, neither the material nonlinearity of the soil nor loss of soil stiffness within the liquefiable layer significantly affect the maximum bending moment. When the thickness of the liquefiable soils is greater than about three times that of an overlying intact layer, soil stiffness in the liquefiable layer must be chosen carefully when evaluating the maximum bending moment.  相似文献   

17.
Dynamic response of a flexible cantilever wall retaining elastic soil to harmonic transverse seismic excitations is determined with the aid of a modified Vlasov–Leontiev foundation model and on the assumption of vanishing vertical displacement of the soil medium. The soil–wall interaction is taken into consideration in the presented model. The governing equations and boundary conditions of the two unknown coupled functions in the model are derived in terms of Hamilton׳s principle. Solutions of the two unknown functions are obtained on the basis of an iterative algorithm. The present method is verified by comparing its results with those of the existing analytical solution. Moreover, a mechanical model is proposed to evaluate the presented method physically. A parametric study is performed to investigate the effects of the soil–wall system properties and the excitations on the dynamic response of the wall.  相似文献   

18.
The seismic performance of four pile‐supported models is studied for two conditions: (i) transient to full liquefaction condition, i.e. the phase when excess pore pressure gradually increases during the shaking; (ii) full liquefaction condition, i.e. defined as the state where the seismically induced excess pore pressure equalises to the overburden stress. The paper describes two complementary analyses consisting of an experimental investigation, carried out at normal gravity on a shaking table, and a simplified numerical analysis, whereby the soil–structure interaction (SSI) is modelled through non‐linear Winkler springs (commonly known as p–y curves). The effects of liquefaction on the SSI are taken into account by reducing strength and stiffness of the non‐liquefied p–y curves by a factor widely known as p‐multiplier and by using a new set of p–y curves. The seismic performance of each of the four models is evaluated by considering two different criteria: (i) strength criterion expressed in terms of bending moment envelopes along the piles; (ii) damage criterion expressed in terms of maximum global displacement. Comparison between experimental results and numerical predictions shows that the proposed p–y curves have the advantage of better predicting the redistribution of bending moments at deeper elevations as the soil liquefies. Furthermore, the proposed method predicts with reasonable accuracy the displacement demand exhibited by the models at the full liquefaction condition. However, disparities between computed and experimental maximum bending moments (in both transient and full liquefaction conditions) and displacement demands (during transient to liquefaction condition) highlight the need for further studies. Copyright © 2016 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

19.
A new efficient method is developed for the analysis of pile-group effects on the seismic stiffness and strength design of buildings with pile foundations. An efficient continuum model consisting of a dynamic Winkler-type soil element and a pile is used to express the dynamic behavior of the structure-pile-soil system with only a small numerical error. The pile-group effect is taken into account through the influence coefficients among piles which are defined for interstory drifts and pile-head bending moments. It is shown that, while the pile-group effect reduces the interstory drift of buildings in general, it may increase the bending moment of piles at the head. This means that the treatment without the pile-group effect results in the conservative design for super-structures and requires a revised member design for piles.  相似文献   

20.
地震作用下重力式挡土墙土压力特性数值模拟研究   总被引:4,自引:1,他引:3       下载免费PDF全文
重力式挡土墙在地震作用下的土压力特性一直是挡土墙设计的重要内容。本文通过数值模拟,在挡土墙墙背轴线上设置一系列监测点,得到地震过程中监测点的加速度、土压力强度时程曲线;然后根据时程曲线分析墙后土压力强度分布特征、根据土压力强度分布求出总土压力、根据总土压力求出其对墙趾的力矩;最后分别将土压力强度分布、总土压力、总土压力对墙趾的力矩与现有的研究方法及规范对比。结果表明:地震作用下墙背各点加速度峰值在同时刻发生,但土压力峰值不在同时刻发生;现有的一些研究方法未考虑土压力强度峰值时程变化,其结果比实际偏大;在低地震烈度条件下,规范计算的总土压力及倾覆力矩偏于保守,而在高烈度条件下则偏于危险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号