首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A four-dimensional variational data assimilation system has been applied to an experiment to describe the dynamic state of the North Pacific Ocean. A synthesis of available observational records and a sophisticated ocean general circulation model produces a dynamically consistent dataset, which, in contrast to the nudging approach, provides realistic features of the seasonally-varying ocean circulation with no artificial sources/sinks for temperature and salinity fields. This new dataset enables us to estimate heat and water mass transports in addition to the qualification of water mass formation and movement processes. A sensitivity experiment on our assimilation system reveals that the origin of the North Pacific Intermediate Water can be traced back to the Sea of Okhotsk and the Bering Sea in the subarctic region and to the subtropical Kuroshio region further south. These results demonstrate that our data assimilation system is a very powerful tool for the identification and characterization of ocean variabilities and for our understanding of the dynamic state of ocean circulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A 9-year study of planktonic foraminifer fluxes was conducted in the Bering Sea (Station AB) and in the central subarctic Pacific (Station SA). Results clearly reflected variations of the water mass characteristics in the upper layers. The 9-year means of total foraminifer fluxes were the same (1400 shells m−2 d−1) at both stations. However, total foraminifer flux at Station AB tended to show its primary maximum during fall (October–December) and its secondary maximum in spring (April–June), whereas the primary maximum appeared in spring and the secondary maximum in fall at Station SA. Seasonal variation was more apparent at hemipelagic Station AB than at pelagic Station SA. Planktonic foraminifers found at both stations were of six species: Neogloboquadrina pachyderma, Globigerina umbilicata, Globigerinita glutinata, Globigerina quinqueloba, Globorotalia wilesi, and Orbulina universa. The foraminifer assemblages at the two stations reflected the temperature difference in the surface waters. The variable %G. umbilicata tended to be high in the warm surface waters during the summers. The temporal and geographical variation of %G. quinqueloba indicated that this taxon prefers regions with relatively low diatom fluxes. A notable appearance of O. universa occurred in 1997 at Station SA. During this period, other measured biogenic particle fluxes, such as those of diatoms, were low. This unusual 1997 event may be a reflection of global climatic change that happened to be observed in the central subarctic Pacific Ocean.  相似文献   

3.
To elucidate the ecological importance of mixotrophic nanoflagellates in the open ocean and the environmental factors that regulate their abundance, we surveyed latitudinal distributions of autotrophic, mixotrophic and heterotrophic nanoflagellates in the central North Pacific Ocean along a transect at 170°W. Mixotrophic nanoflagellates significantly contributed (26–64 %) to total bacterivory, as measured by the fluorescently-labeled bacteria method, from the equatorial through the subarctic regions, which reinforces the importance of mixotrophic nanoflagellates as a trophic link in the open ocean. The proportion of mixotrophic to total plastidic nanoflagellates was significantly higher in the nutrient-depleted subtropical gyre than in other regions, sometimes exceeding 10 %. Additionally, the proportion was negatively correlated with soluble reactive phosphorus concentration within the tropical and subtropical waters, suggesting that low nutrient availability could facilitate phagotrophy of plastidic nanoflagellates, which may explain the survival of nano-sized eukaryotic phytoplankton in the ultraoligotrophic water. In the subarctic regions, the proportion exhibited no obvious relationship with any environmental parameter. Conversely, the numerical proportion of mixotrophic nanoflagellates in total phagotrophic nanoflagellates (sum of mixotrophic and heterotrophic nanoflagellates) was positively correlated with nutrient concentrations. In contrast to macronutrient availability, the physical stability of the water column did not appear to affect the contribution of mixotrophic nanoflagellates.  相似文献   

4.
Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were related to regional variations in salinity, temperature and nutrient distribution. Annual fluxes of diatom opal range between 3 and 28 g m−2 yr−1, while planktonic foraminifera carbonate fluxes range between 6 and 23 g m−2 yr−1 and coccolithophorid carbonate fluxes range between 4 and 24 g m−2 yr−1. Annual planktonic foraminifera carbonate to coccolithophorid carbonate ratios range between 0.8 and 2.2 and coccolithophorid carbonate to diatom opal ratios range between 0.5 and 3.3.In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when nutrient-rich upwelled waters are advected over the trap site. In the oligotropic eastern Arabian Sea, coccolithophorid carbonate fluxes are high throughout the year. Planktonic foraminiferal carbonate fluxes are the major contributors to biogenic flux in the EIOT. In the northern and central Bay of Bengal, when surface salinity values drop sharply during the SW monsoon, there is a drastic reduction in planktonic foraminiferal carbonate fluxes, but coccolithophorid carbonate and diatom opal fluxes remain steady or continue to increase. Distinctly higher annual molar Sibio/Cinorg (>1) and Corg/Cinorg (>1.5) ratios are observed in the northern and central Bay of Bengal mainly due to lower foraminiferal carbonate production as a result of sharp salinity variations. We can thus infer that the enhanced freshwater supply from rivers should increase oceanic CO2 uptake. Its silicate supply favours the production of diatoms while the salinity drop produces conditions unfavourable for most planktonic foraminifera species.  相似文献   

5.
The zooplankton community of the subarctic Pacific is relatively simple, and contains a similar set of major species in all deep water areas of the subarctic Pacific. Their role in the food web varies considerably between coastal and offshore locations. In the oceanic gyres, microzooplankton and other mesozooplankton taxa replace phytoplankton as the primary food source for the dominant mesozooplankton species. Micronekton and larger zooplankton probably replace pelagic fish as major direct predators. Productivity and upper ocean biomass concentrations are intensely seasonal, in part because of seasonality of the physical environment and food supply, but also because of life history patterns involving seasonal vertical migrations (400–2000 m range) and winter dormancy. During the spring–summer season of upper ocean growth, small scale horizontal and vertical patchiness is intense. This can create local zones of high prey availability for predators such as planktivorous fish, birds, and marine mammals. On average, the cores of the subarctic gyres have lower biomass and productivity than the margins of the gyres. There is also some evidence that the Western Gyre is more productive than the Alaska Gyre, but more research is needed to confirm whether this east–west gradient is permanent. There is increasing evidence that the pattern of zooplankton productivity is changing over time, probably in response to interdecadal ocean climate variability. These changes include 2–3 fold shifts in total biomass, 30–60 day shifts in seasonal timing, and 10–25% changes in average body length.  相似文献   

6.
The flux of settling particles in the ocean has been widely explored since 1980s due to its important role in biogenic elements cycling, especially in the transport of particulate organic carbon (POC) in the deep sea. However, research in the seamount area of the oligotrophic subtropical Northwest Pacific Ocean is lacking. In this work, two sediment traps were deployed at the foot and another two at the hillside of Niulang Guyot from August 2017 to July 2018. The magnitude and composition of particle fluxes were measured. The main factors influencing the spatial variations of the fluxes were evaluated. Our results indicated a low particulate flux from Niulang Guyot area in the Northwest Pacific Ocean, reflecting low primary productivity of the oligotrophic ocean. The total mass flux (TMF) decreased from 2.57 g/(m2·a) to 0.56 g/(m2·a) with increasing depth from 600 m to 4 850 m. A clear seasonal pattern of TMF was observed, with higher flux in summer than that in winter. The peak flux of 26.52 mg/(m2·d) occurred in August at 600 m, while the lowest value of 0.07 mg/(m2·d) was shown in February at 4 850 m. The settling particles at the deep layers had similar biochemical composition, with calcium carbonate (CaCO3) accounting for up to 90%, followed by organic matter and opal, characteristics of Carbonate Ocean. The POC flux decreased more rapidly in the twilight layer because of faster decomposition, remineralization, and higher temperature. A small fraction of POC was transported into the deep ocean by biological pump. Particle fluxes were mainly controlled by the calcareous ballasts besides the primary productivity of the surface water. The advection may be another important factor affecting the flux in the seamount area. The combination of settled matters rich in foraminiferal tests with topography and currents may be the reason for regulating the local abundance of benthos on seamounts. Our results will fill in the knowledge gap of sedimentation flux, improve the understanding of ecosystem in Niulang Guyot area, and eventually provide data support for the optimization of regional ecological modeling.  相似文献   

7.
Data collected primarily from commercial ships between 1987 and 2010 are used to provide details of seasonal, interannual and bidecadal variability in nutrient supply and removal in the surface ocean mixed layer across the subarctic Pacific. Linear trend analyses are used to look for impacts of climate change in oceanic domains (geographic regions) representing the entire subarctic ocean. Trends are mixed and weak (generally not significant) in both winter and summer despite evidence that the upper ocean is becoming more stratified. Overall, these data suggest little change in the winter resupply of the mixed layer with nutrients over the past 23 years. The few significant trends indicate a winter increase in nitrate (~0.16 μM year−1) in the Bering Sea and in waters off the British Columbia coast, and a decline in summer phosphate (0.018 μM year−1) in the Bering. An oscillation in Bering winter nutrient maxima matches the lunar nodal cycle (18.6 years) suggesting variability in tidal mixing intensity in the Aleutian Islands affects nutrient transport. Nitrate removal from the seasonal mixed layer varies between 6 μM along the subarctic–subtropical boundary and 18 μM off the north coast of Japan, with April to September new production rates in the subarctic Pacific being estimated at 2 and 6 moles C m−2. Changes in nutrient removal in the Bering and western subarctic Pacific (WSP) suggest either the summer mixed layer is thinning with little change in new production or new production is increasing which would require an increase in iron transport to these high-nutrient low-chlorophyll (HNLC) waters. Si/N and N/P removal ratios of 2.1 and 19.7 are sufficient to push waters into Si then N limitation with sufficient iron supply. Because ~3 μM winter nitrate is transferred to reduced N pools in summer, new production calculated from seasonal nutrient drawdown should not be directly equated to export production.  相似文献   

8.
太平洋海气界面净热通量的季节、年际和年代际变化   总被引:9,自引:0,他引:9  
根据 COADS资料 ,使用经验正交分解 (EOF)等分析方法 ,研究了北太平洋海气热通量的季节、年际和年代际变化特征。分析结果表明 :北太平洋海洋夏季净得热 ,冬季净失热 ,且黑潮及其延伸体区失热最大。净热通量年际变化较明显 ,北太平洋西部模态水形成区冬季净热通量和副热带失热区春季净热通量的年际变化都主要依赖于潜热和感热通量的年际变化。夏季净热通量的低频变化中心在热带 ,冬季低频变化中心在黑潮及其延伸体区。冬季赤道东、西太平洋净热通量异常的年际变化相反 ;在热带北太平洋中部年际变化达到最大。夏季热带太平洋是净热通量异常的年际变化最大的海域 ,沿赤道两侧在 16 5°E处呈偶极子型分布。  相似文献   

9.
Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific Ocean reveal the biogeochemical controls on CDOM and indicate predictive potential for open-ocean CDOM in diagnosing particulate organic matter (POM) remineralization rates within ocean basins. Relationships between CDOM and concentrations of dissolved oxygen, nutrients and inorganic carbon in the subthermocline waters of the Pacific reflect the relative influences of water mass ventilation and water-column oxidative remineralization. Apparent in situ oxygen utilization (AOU) accounts for 86% and 61% of variance in CDOM abundance, respectively, in Antarctic Intermediate Water and North Pacific Intermediate Water. In the deep waters of the Pacific below the zone of remineralization, AOU explains 26% of CDOM variability. The AOU–CDOM relationship results from competing biogeochemical and advective processes within the ocean interior. Dissolved organic carbon (DOC) is not statistically linked to the CDOM or AOU distributions, indicating that the majority of CDOM production occurs during the remineralization of sinking POM and thus potentially provides key information about carbon export. Once formed in the ocean interior, CDOM is relatively stable until it reaches the surface ocean where it is destroyed by solar bleaching. Susceptibility to bleaching confers an additional tracer-like quality for CDOM in water masses with active convection, such as mode waters that appear as subsurface CDOM minima. In the surface ocean, atypically low CDOM abundance highlights a region of unusually extreme oligotrophy: the subtropical South Pacific gyre. For these hyper-oligotrophic waters, the present CDOM observations are consistent with analysis of in situ radiometric observations of light attenuation and reflectance, demonstrating the accuracy of the CDOM spectrophotometric observations. Overall, we illustrate how CDOM abundance in the ocean interior can potentially diagnose rates of thermohaline overturning as they affect regional biogeochemistry and export. We further show how relative surface ocean CDOM abundances are driven in large part by processes occurring in the deep layers of the ocean. This is particularly significant for the interpretation of the global surface distribution of CDOM using satellite remote sensing.  相似文献   

10.
北太平洋副极地海区作为全球海洋三个高营养盐低叶绿素(high nutrient and low chlorophyll, HNLC)海区之一, 其浮游植物生长受到微量元素铁的限制。对于开阔大洋, 大气沉降是海洋表层铁的一个重要来源, 铁元素沉降进入海洋后能够促进浮游植物生长, 进而引起海洋初级生产力和生物泵的响应。本文利用SPRINTARS(Spectral Radiation-Transport Model for Aerosol Species)模式的时长为20a的日均大气沉降数据, 对北太平洋海区大气沉降的时空特征进行了分析。结果表明, 进入北太平洋海区的大气沉降量为26.81Tg·a-1, 并且存在显著的季节变化: 春季最高, 冬季最低, 5月份进入海洋的沉降量达到峰值。大气沉降主要来源于陆地区域, 在风场的驱动下向海洋传输, 因此大气沉降量的空间分布呈现出西高东低的特征。本文以2010年8月中旬卫星观测到的一次强沙尘(即高大气沉降量)事件为例, 研究了大气沙尘的传播路径。进一步结合2001年4月9—12日及2008年4月20—22日的沙尘事件, 分析了西北太平洋K2站位(47°N, 160°E)附近海域海洋初级生产力对大气沉降——沙尘事件的响应。结果表明, 三次沙尘事件后, K2站位的颗粒有机碳通量、叶绿素浓度均有明显增加, 即沙尘事件对北太平洋副极区海洋初级生产力存在促进作用。  相似文献   

11.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

12.
白令海和楚科奇海表层沉积中的有孔虫及其沉积环境   总被引:5,自引:3,他引:5  
通过对白令海和北冰洋楚科奇海39个表层沉积样品中有孔虫的定量分析,发现表层沉积中浮游有孔虫稀少可能与该区表层生产力低、碳酸盐溶解作用较强有关,而底栖有孔虫的分布则主要受表层初级生产力以及与水深相关的碳酸盐溶解作用和水团性质所控制,其中北冰洋楚科奇海陆架区有孔虫以Elphidium spp.组合和Nonionella robusta组合为主,丰度和分异度低,受北冰洋沿岸水团控制;白令海陆坡区有孔虫以Uvigerina peregrina-Globobulimina affinis组合为主,含N.robusta较多,丰度和分异度相对高,受太平洋中层和深层水团控制,但该区碳酸盐溶跃层和补偿深度(CCD)相对浅,约分别位于2000和3800m处.此外,白令海陆坡上部表层沉积中含有北冰洋陆坡区典型深水底栖有孔虫种Stetsonia arctica,说明白令海峡两侧的海区曾有深部水交流.  相似文献   

13.
Copepod species of the genus Neocalanus dominate the zooplankton biomass of the oceanic subarctic Pacific Ocean. Neocalanus spp. populations in the subarctic Pacific environment are successful: they feed, accumulate lipid, and persist from year to year. Prior experimental observations derived from a variety of methods indicated that, although their functional morphology is such that they clear the small phytoplankton cells characteristic of the oceanic subarctic Pacific environment efficiently, Neocalanus spp. do not consume sufficient phytoplankton to meet even basic metabolic requirements in that environment. Hence, their success in the subarctic Pacific must depend on their ability to obtain nutrition from other sources. As part of the SUPER (SUbarctic Pacific Ecosystem Research) program, experiments were performed to test the hypothesis that N. plumchrus and N. cristatus obtain a significant portion of their nutrition from planktonic Protozoa. The experiments demonstrate that Protozoa alone do not provide sufficient nutrition for N. cristatus to meet its basic metabolic needs. Protozoa constitute the major dietary component of N. plumchrus however, in agreement with the predictions of Frost's (1987) model of the subarctic Pacific ecosystem. At a minimum this diet permits N. plumchrus to meet basic metabolic requirements. Copepod grazing activities appear to be sufficient to control protozoan stocks in the oceanic subarctic Pacific during late spring and early summer when Neocalanus spp. inhabit the upper water column.  相似文献   

14.
Quantitative data on the vertical distribution and biomass of microzooplankton are presented for the western subtropical Pacific west of the Bonin Islands in winter. Microzooplankton other than foraminifera and radiolarians showed similar vertical distribution to chlorophylla. Among microzooplankters, naked ciliates, tintinnids and copepod nauplii were dominant components both in number and volume. Naked ciliates were the most dominant, comprising 82.2 % and 47.7 % of the total microzooplankton by number and volume, respectively. Copepod nauplii, occupying less than 10 % by number, accounted for 35.7 % of the volume of all microzooplankton. Tintinnids contributed less to the microzooplankton standing crop, 12.6 % of the total by number and 17.3 % by volume. Calculated microzooplankton wet weight varied from 0.84 to 1.80 g m?2 and corresponded to 9.9–18.1 % of net zooplankton weight. The relative abundance of microzooplankton to net zooplankton in this study is comparable to that previously reported in the tropical and subtropical Pacific Ocean, but a little higher than in oceanic subarctic areas.  相似文献   

15.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

16.
This volume of DSR II is dedicated to the Canadian Joint Global Ocean Flux Study (JGOFS) in the NE subarctic Pacific. This oceanic province is one of three High Nitrate Low Chlorophyll (HNLC) regions in the world oceans. Furthermore, this region is characterised by a shallow (ca. 100–120 m) permanent pycnocline during winter, which permits relatively high numbers of phytoplankton and micro-grazers to subsist over winter, which in turn strongly influences pelagic community structure. The 5-year field study encompassed two phases – phase 1 (seven voyages between September 1992 and May 1995), and the intensive phase 2 (six voyages between September 1995 and June 1997). Each voyage transected line P – from the coastal ocean westward to the open ocean. In addition to the JGOFS study, this volume also includes analyses of long time-series (>20 yr) data sets from Ocean Station Papa (OSP; 50°N 145°W) and other stations in the coastal and open ocean.  相似文献   

17.
Long-term monitoring of diatom fluxes during 1990–1998 was conducted at Station AB in the Bering Sea and Station SA in the central subarctic Pacific in order to decipher the relationships between sinking diatom and the upper water mass environments. The total diatom flux at Station AB was generally twice as high as that at Station SA. The dominant species in the sinking flora was primarily Neodenticula seminae at both stations, which was a significant contributor to organic carbon flux. The flora at Station AB was represented by relatively abundant coastal taxa including Chaetoceros resting spores. These results suggest more favorable conditions for diatom production at Station AB compared with those at Station SA. The possible influences of oligotrophic and temperate water masses were discerned from the positive SST anomaly and the occurrence of a few specimens of temperate species. The cumulative annual fluxes of total diatoms at Stations AB and SA are apparently related to the variation in the mean annual depth of mixed layer. At Station SA, annual mean of total diatom flux showed a negative correlation with the Pacific Decadal Oscillation (PDO) Index, which suggests a significant relationship between surface water turbidity and diatom production. At Station AB, the annual change of coastal diatom flux was correlated with the PDO and the winter value of the Arctic Oscillation, which may suggest a significant influence of Alaskan Stream waters via the Aleutian Islands and intensity of surface water mixing.  相似文献   

18.
杨秋明 《海洋学报》2006,28(3):47-56
用1951~2001年观测资料,研究了南印度洋副热带偶极子型(IOSD)海温异常对全球500hPa环流和我国降水的影响.结果表明,冬季IOSD激发出极显著的南北半球环绕太平洋的波列结构(CP),其年际变化周期是2.0和6.5 a,与赤道中东太平洋海温也有密切联系.北半球冬季异常峰值后的第二年春季欧亚中高纬度地区500 hPa环流出现显著的EUP型低频流型持续异常,同时中太平洋和北美地区出现CPNP流型和澳大利亚南部的南半球中高纬地区呈现极显著的西南太平洋遥相关型(SWP).当冬季赤道南印度洋副热带呈极显著的西负东正海温距平分布时,后期春季欧亚中高纬地区负EUP型遥相关波列持续偏强,导致东亚大槽明显偏弱,长江以北地区(特别是黄河中上游地区)多雨.反之,春季东亚大槽加强且稳定,我国东部地区大范围少雨.它反映了南印度洋地区海气系统相互作用与东亚热带内外环流低频变化的联系.因此,上一年冬季南印度洋副热带偶极子型(IOSD)海温异常强度是预测春季华北地区旱涝变化的重要因子之一.  相似文献   

19.
We present a compilation of apparent oxygen utilization (AOU) changes observed in the upper pycnocline of the North Pacific Ocean over the last several decades. The goal here is to place previously-published data in a common format, and assess the causes of the observed changes. The general trend along repeat cross sections of the eastern and western subtropical ocean and the subarctic ocean is an increase in AOU from the mid 1980s to the mid 1990s. AOU has also been increasing in a time-series study in the northwest subarctic Ocean off of Japan since the late 1960s. Observed AOU changes south of 35°N in the subtropical ocean are 10–20 μmol kg−1, with much greater changes, reaching 60–80 μmol kg−1 in isolated areas, in the subtropical/subarctic boundary and the subarctic ocean. Analysis of changes in both AOU and salinity on isopycnals suggests that there are significant salinity-normalized increases that must be due to alteration in the rate of ventilation or organic matter degradation. A common feature in the data is that the maximum increase in AOU is centered near the density horizon σθ= 26.6. Time series results from the Oyashio Current region near the winter outcrop area of this density horizon indicate that surface waters there have become fresher with time, which may mean this density surface has ceased to outcrop in the latter decades of the 20th century. Whether this is due to natural decadal-scale changes or anthropogenic influences can be decided by determining future trends in AOU on these density surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and 4.1 mg m-2day-1, respectively. CaCO3 materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and 0.31 mg m-2day-1, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号