首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
冰期-间冰期旋回   总被引:1,自引:0,他引:1  
第四纪(2.5 Ma BP)气候的一个重要特征就是冰期-间冰期旋回.目前我们正处于间冰期中,气候温暖.这个间冰期地质学家称为全新世,是从11.5 kaBP开始的,至今已延续了1万年以上.而在此之前是距我们最近的一次冰期,称为末次冰期.  相似文献   

2.
我们居住的地球大约诞生于50亿年前,先后经历了前寒武纪、击生代、中生代和新生代等漫长的地质时期。新生代包括第三纪和第四纪。第四纪约始于200万年前,分为更新世和全新世。我国青藏高原的喜玛拉雅山脉就隆起于第三纪末的中新世和第四纪。在漫长的地质年代里,地球的气候曾经历过一些较为寒冷的时期,称之为冰期。冰期大约占地球历史的卜5-10%,二三百万年前,地球的气候进入7最近的一次冰期,称为第四纪冰期。虽然未次大冰期已于一万年前结束,但至今地球上的一些地方仍存留有它的痕迹。例如在我国著名的庐山就存在第四纪冰川擦过的…  相似文献   

3.
末次冰期冰盛期(或称为末次盛冰期),为第四纪更新世最后一个冰期的鼎盛时期,该时期的气候与当代气候迥然不同。近年来,中国科研工作者已就末次冰期冰盛期东亚区域气候开展了一些数值模拟工作。结果表明:该时期中国大陆地表气温降低,中东部地区降水显著减少,东亚冬季风增强、夏季风显著减弱。在国际古气候模拟比较计划(PMIP)标准试验的基础上,进一步指出东亚植被的反馈作用、青藏高原可能冰川的反馈作用、以及西太平洋表面温度的作用能够引起额外的气候效应,可在一定程度上改进PMIP标准试验的模拟效果。  相似文献   

4.
鄂西电线积冰微物理观测研究   总被引:6,自引:1,他引:5  
贾然  牛生杰  李蕊 《气象科学》2010,30(4):481-486
对2009年2月25日—3月4日湖北恩施雷达站的一次电线积冰过程,使用自动气象站、能见度仪、雾滴谱仪、雨滴谱仪等实测资料进行深入研究,分析了多种气象要素的演变,发现积冰期比无积冰期平均气温低5.6℃。对积冰期间3种天气状况下雾滴谱和降水粒子谱的特征进行了分析,结果表明:雾天和雨天的雾滴谱为单峰型,雨夹雪天为双峰型;雨天和雨夹雪天的降水粒子谱都为单峰型;雾滴平均数密度从大到小依次是:雨天(223.5 cm-3)、雨夹雪天(181.3 cm-3)、雾天(138.7 cm-3);雨天雨滴平均数密度为335.6 cm-3;雨夹雪天降水粒子平均数密度为1 502.1 cm-3。另外,实测数据表明积冰增长率从大到小依次是:雨夹雪天、雨天、雾天。  相似文献   

5.
在我国高寒地区进行冰期蒸发观测,仪器易冻裂渗漏水,要保持冰期和非冰期资料的连续性与统一性相当困难。根据新疆的特殊自然环境,试制成了自动排水减压和自动调压式冰期蒸发测定仪,基本解决了我国高寒地区冰期蒸发资料无法连续和统一的难题。  相似文献   

6.
末次冰期东亚区域气候变化的情景和机制研究   总被引:10,自引:0,他引:10  
钱云  钱永甫  张耀存 《大气科学》1998,22(3):283-293
用一嵌套在全球大气环流模式中的区域气候模式,通过数值试验和对内外因作用的机制分析,探讨了以末次冰期为背景的大尺度强迫引起的大气环流和区域内下垫面条件异常等中尺度强迫影响区域气候变化的过程和机制。大尺度强迫和区域内局地的中尺度强迫通过不同的热力和动力学过程影响大气运动状况和区域气候的变化。末次冰期大尺度强迫引起的全球大气环流背景的变化是形成冰期和现代区域气候差异的主要原因。  相似文献   

7.
关于末次盛冰期青藏高原大范围冰盖存在可能性的再研究   总被引:8,自引:0,他引:8  
通过4组数值敏感性试验,利用BIOME3生态模式对末次盛冰期中国大陆植被分布状况进行了数值模拟,再次研究了该时期青藏高原大范围冰盖存在的可能性问题.结果表明,末次盛冰期大陆植被发生了大规模的变化,总体呈退化趋势;在降温5℃、降水减少10%、二氧化碳下降145×10-6和地球轨道参数轻微变化的情况下,青藏高原约1/2的地区已经被冰覆盖;进一步的降温和干燥则会加大高原冰的覆盖面积和大陆其余地区植被的退化.  相似文献   

8.
总结回顾了二十年来古气候研究的进展,着重揭示古气候变化的事实.共分析了10个问题:(1)威尔逊旋回,(2)冰河时代,(3)生物大灭绝,(4)人类走出非洲,(5)第四纪冰期一间冰期旋回,(6)下一个冰期何时到来,(7)末次冰期冰盛期,(8)冰期气候的不稳定性,(9)全新世气候的不稳定性,(10)全新世气候变化趋势.  相似文献   

9.
林贤超  李克让 《大气科学》1993,17(6):703-712
本文利用一个简单的气候模式,求得三个平衡态的全球半均温度值分别为:T_1=248.5K,T_2=271.9K和T_3=288.1K,其中对应于温暖时期和寒冷时期的T_3和T_1是稳定的.若要使现代温暖气候转变为寒冷气候,太阳常数约需比现代值减少3%:若从寒冷气候转变成温暖气候,太阳常数需增加约6.3%.这表明寒冷气候的状态要比温暖气候的状态相对稳定些.然后讨论了随机扰动对气候半衡态之间转换的作用.结果表明:仅通过天气随机扰动的涨落效应不可能使气候系统实现冰期-间冰期之间10~5年周期尺度的转换.  相似文献   

10.
利用全球模式CCM3嵌套区域模式MM5的方法研究了末次盛冰期海陆分布、植被和大尺度环流背景场变化对末次盛冰期气候变化的作用。模式结果表明:与现代相比,末次盛冰期东亚地区海陆分布发生的变化造成这一地区冬季减温,夏季增温,这个变化对中国东部近海地区的温度和降水产生明显的影响,尤其是对降水的影响。它使得中国东部地区降水减少,由此造成的降水减少占末次盛冰期降水减少的25%—50%。海陆分布的变化对内陆和中国西部地区影响很小。末次盛冰期中国东部地区植被发生了明显的变化,温带和寒带植物南移,热带植物的覆盖范围减少。中国东部地区植被的巨大变化对温度产生了影响,使该地区冬季增温,夏季减温,年平均温度变化不大。末次盛冰期全球气候发生巨大的变化,即大尺度环流背景场变化。它使得中国地区的温度和降水产生显著变化,这个变化造成中国地区温度降低,并且决定了温度变化的主要分布和变化特征,东北地区是中国末次盛冰期降温最大的地区,青藏高原的降温超过同纬度的东部地区等。同时,大尺度背景场的变化还控制着降水的变化,末次盛冰期中国西部地区和东北地区降水的变化几乎完全是背景场变化引起的,其对华北和华东地区降水的影响大约为50%—75%。综合我们研究的影响末次盛冰期中国地区气候变化的因子,按影响程度由大到小排序为:大尺度环流背景场、海陆分布变化、植被变化、CO2浓度变化和地球轨道参数变化。  相似文献   

11.
乌鲁木齐河源地气候与冰川变化特征及其对径流的影响   总被引:4,自引:1,他引:3  
根据位于乌鲁木齐河源地大西沟气象站40年(1958-1998年)气候资料,分析了温度、降水量分布规律与冰川变化特征,得出气候、冰川的变化对径流量影响的几点结论。表明,在全球性气候变暖背景下,中天山高山区呈变暖,自然降水(雪)资源增多,冰川资源减少趋势;继续发展,将会严重影响冰川的调节功能。  相似文献   

12.
Annually laminated sediments (glacial varves) from Lake Silvaplauna, a High Alpine proglacial lake in the Central Swiss Alps, were compared with glacier monitoring data and instrumental climate data from 1864 to 1990. Long-term and short-term responses to climatic change as well as anthropogenic influence can be traced separately in the varve succession. Economic development in the lake catchment has resulted in higher autochthonous production in recent years. Autochthonous components contribute around 10% to the total amount of sediment accumulated annually since 1960 but their contribution is negligible before this date. Decadal-scale varve thickness trends correlate with glacier size-variations. A stepwise, running multiple regression analysis demonstrates that interannual changes in varve thickness are strongly correlated with changes in mean summer temperatures, but cannot be sufficiently explained without considering summer precipitation and the number of days with snow per year. The wide range of observed correlation coefficients reveals the sensitivity of the archive to temporal variability of the climatic forcing factors and makes the development of transfer functions ambiguous.  相似文献   

13.
To predict the evolution of glaciers in an enhanced greenhouse climate, results from a global climate model, a glacier melt/accumulation model, and a glacier flow model were combined. The method was applied to Storglaciären, a small well-studied glacier in northern Sweden. The difference between the present climate and a 2 × CO2 climate around the year 2050 was extracted from a model experiment with the ECHAM4-T106 high resolution climate model for time slices at present and in 2050, using prescribed boundary conditions of sea surface temperature and sea-ice distribution, which are derived from a lower resolution transient run of the ECHAM4-T42/OPIC-coupled atmosphere ocean model between present and 2050. The local climatic conditions on the glacier for 2050 were obtained by adding the modelled local climate changes to the observed local present-day climate. The combination of the comprehensive models presented offers a tool to test and calibrate simplified models which are applicable to a much larger sample of glaciers. For the region of Storglaciären, the GCM projected temperature is found to increase most strongly during the winter months, but also shows a warming during the transition from spring to summer, and again between summer and fall, thus extending the melt season by three to four weeks. Precipitation, on the other hand, decreases by approximately 5% during May to September while there is a stronger increase of approximately 14% for the rest of the year. The consequent increase in winter accumulation on Storglaciären is more than compensated by the increase in ablation during the melt season. The glacier flow model predicts a 300 m retreat of the glacier terminus by the middle of the next century, and a loss of 30% of the present ice mass.  相似文献   

14.
The evidence on the climatic history of East Africa over the past two centuries comprises historical accounts of lake levels, observations and analyses of glacier variations, wind and current observations in the Indian Ocean, as well as raingauge measurements. East Africa experiences its rainy seasons in boreal spring and autumn, centered around April–May and October–November; the spring rains being more abundant and the autumn rains more variable. Rains tend to be abundant/deficient with slow/fast westerlies (UEQ) and Eastward Equatorial Jet (EEJ) in the upper hydrosphere of the equatorial Indian Ocean. A drastic climatic dislocation took place during the last two decades of the l9th century, manifest in a drop of lake levels, onset of glacier recession, and acceleration of UEQ and EEJ. The decades immediately preceding 1880 featured high lake stands, extensive glaciation, and slow UEQ and EEJ, as compared to the 20th century. The onset of glacier recession in East Africa after 1880 contrasts with a start of ice shrinkage in New Guinea and the Ecuadorian Andes around the middle of the l9th century. The regional circulation regime characterized by slow UEQ and EEJ in the decades prior to 1880 was conducive to extensive ice cover along with high lake stands in East Africa, and this may account for the onset of glacier recession much later than in the other mountain regions of the equatorial zone. The evolution of East African climate over the first half of the l9th century merits further exploration.  相似文献   

15.
天山乌鲁木齐河源1号冰川消融对气候变化的响应   总被引:5,自引:0,他引:5  
目前气候变暖导致的冰川退缩,引起了全世界的广泛关注。 以新疆天山乌鲁木齐河源1号冰川为例,根据1958年以来的观测资料,研究了冰川消融对气候变化的响应。结果表明,近50 a来冰川在表面粒雪特征、成冰带、冰川温度、面积、厚度及末端位置等方面发生了显著变化,而这些变化均与气温的升高有着密切的联系;20世纪80年代以来的快速升温,使冰川的退缩出现了加速趋势,冰川融水径流量也呈加速增大趋势。  相似文献   

16.
 Current glacier recession under the global warming has aroused world-wide attention. Initiated from 1958, the observations of Urumqi Glacier No. 1 at the headwaters of Urumqi River in eastern Tianshan promise the best datasets of the glacier and the climate changes in China. Taking Urumqi Glacier No. 1 as an example, we analyzed the response of the glacier to the climate change. The results show that over the past 50 years, the glacier has changed remarkably in the aspects of snow-firn stratigraphy, ice formation zone, ice temperature, area and terminus position, etc. These changes are apparently the results of temperature rise in this area. The glacier recession continued throughout the entire observed time period, and showed an accelerated tendency since 1985. Meltwater runoff also increased 84.2% over the last 20 years.  相似文献   

17.
Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400?years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the pre-instrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94?±?0.31?K over the period 1830–2000 and a cumulative warming of 0.84?±?0.35?K over the period 1600–2000.  相似文献   

18.
The absence of memory in the climatic forcing of glaciers   总被引:1,自引:1,他引:0  
Glaciers respond to both long-term, persistent climate changes as well as the year-to-year variability that is inherent to a constant climate. Distinguishing between these two causes of length change is important for identifying the true climatic cause of past glacier fluctuations. A key step in addressing this is to determine the relative importance of year-to-year variability in climate relative to more persistent climate fluctuations. We address this question for European climate using several long-term observational records: a century-long, Europe-wide atmospheric gridded dataset; longer-term instrumental measurements of summertime temperature where available (up to 250 years); and seasonal and annual records of glacier mass balance (between 30 and 50 years). After linear detrending of the datasets, we find that throughout Europe persistence in both melt-season temperature and annual accumulation is generally indistinguishable from zero. The main exception is in Southern Europe where a degree of interannual persistence can be identified in summertime temperatures. On the basis of this analysis, we conclude that year-to-year variability dominates the natural climate forcing of glacier fluctuations on timescales up to a few centuries.  相似文献   

19.
In past 50 years, the air temperature fluctuation was raising trend in Tarim River Basin. The annual mean temperature has increased by 0.3℃ in the whole Tarim River Basin, and by 0.6℃ in the mountain areas. With global warming, the frequency of unstable and extreme climatic events increased, glaciers retreating accelerated and snow meltwater increased have resulted in the more frequency of snow-ice disasters such as glacier debrisflow and glacier flash flood etc. Since 1980s, in the process of intense climate warming, glaciers melting intensified, ice temperature rose and glaciers flows accelerated, and lead to more glacial lakes and extending water storage capacity and stronger glacial lake outburst floods occurrence. It is proposed that the monitoring and evaluating of the impact of climate change on water resources and floods should be enhanced.  相似文献   

20.
 A seasonally and regionally differentiated glacier model is used to estimate the contribution that glaciers are likely to make to global sea level rise over a period of 70 years. A high resolution general circulation model (ECHAM4 T106) is used to estimate temperature and precipitation changes for a doubled CO2 climate and serves as input for the glacier model. Volume-area relations are used to take into account the reduction of glacier area resulting from greenhouse warming. Each glacieriated region has a specified glacier size distribution, defined by the number of glaciers in a size class and a mean area. Changes in glacier volume are calculated by a precipitation dependent mass balance sensitivity. The model predicts a global sea level rise of 57 mm over a period of 70 years. This corresponds to a sensitivity of 0.86 mm yr−1K−1. Assuming a constant glacier area as done in earlier work leads to an overestimation of 19% for the contribution to sea level rise. Received: 16 August 2000 / Accepted: 21 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号