首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional, elastic and elasto-plastic finite element (FE) programs have permitted calculation of the displacements and the factor of safety (FOS) for the excavation for a tower, 132.70 m high (above foundation) on the island of Tenerife. The tower is supported by a 2 m thick reinforced concrete slab on jointed, vesicular and weathered basalt and scoria. The installation of rod extensometers at different depths below the slab has permitted comparison between measured and calculated displacements and the estimation of in situ deformation modulus. The moduli deduced from the simple empirical equations proposed by Hoek et al. (In: NARMS-TAC, 2002) and Gokceoglu et al. (Int J Rock Mech Min Sci 40:701–710, 2003) as a function of GSI, and Nicholson and Bieniawski (Int J Min Geol Eng 8:181–202, 1990) as a function of RMR, provide an acceptable fit with the measured settlements in this type of rock. Good correlation is also obtained with the empirical equation presented by Verman et al. (Rock Mech Rock Eng 30(3):121–127, 1997) that incorporates the influence of confining stress in the deformation modulus. The FOS obtained from different correlations with geomechanical classifications is within a relatively narrow range. These results increase our confidence in the use of classification schemes to estimate the deformation and stability in jointed rock.  相似文献   

2.
The influence of the consolidation on a strutted excavation in soft soil is analysed using a computer code based on the finite element method. A base jet-grout slab is considered in order to improve stability against bottom heave failure and minimize wall displacements. The numerical model incorporates the Biot consolidation theory (coupled formulation of the flow and equilibrium equations) with soil constitutive relations simulated by the pqθ critical state model. Special emphasis is given to the analysis, during and after the construction period, of the pore pressures, shear stresses, stress levels and displacements in the ground, as well as strut compression loads, wall displacements and bending moments, earth pressures on the wall faces and compression loads and bending moments on the jet-grout slab. The safety factor against bottom heave is also evaluated from the finite element analysis considering formulations of the critical state soil mechanics, and also compared to values obtained with traditional methods that use limit equilibrium approach and bearing capacity fundamentals.  相似文献   

3.
过超  付佰勇  龚维明 《岩土力学》2016,37(Z1):350-358
为进一步研究沉箱-桩复合基础的水平向承载性能,开展粉质黏土中单桩、沉箱-桩复合基础在水平向荷载和竖向及水平向组合荷载作用下的系列试验,对沉箱-桩复合基础的水平荷载与位移关系、桩身弯矩、位移及土抗力分布规律及群桩效应等进行了研究。结果表明,在水平荷载作用下沉箱对桩顶的约束使桩身弯矩分布较桩顶自由情况要更均匀,并能有效地降低桩身弯矩、位移及土抗力,提高了基础水平承载能力;在同时作用有竖向和水平向组合荷载时,沉箱底摩擦力参与抵抗水平力作用、桩顶竖向力也有利于进一步提高基础水平承载力;试验获得了不同桩数、桩顶约束、荷载作用条件下的沉箱-桩复合基础群桩效应系数,对于桩距为6倍桩径的情况,桩与桩之间的相互影响很小。  相似文献   

4.
Hyperstatic Reaction Method considers the interaction between the shotcrete lining and the rock mass modelling half tunnel section by beam elements connected by nodes, which can develop bending moments, axial forces and shear forces. The interaction between ground and support is represented by Winkler type springs in the nodes of the numerical model, in the normal and tangential direction. 1944 analyses were developed considering three different tunnel radius values (2.0, 4.5 and 7.0 m), three different rock types (RMR = 40, RMR = 60 and RMR = 80), three different stress ratios acting on the linings (\(K = 1, \,K = 0.5\) and \(K = 0\)), three different lining thickness values (0.1, 0.2 and 0.3 m) and three values of the average elastic modulus of the shotcrete (6000, 9000 and 12,000 MPa). Besides, also two different stiffness values of the tangential springs at nodes were considered. Results show that the lining thickness and the elastic modulus of the shotcrete have a strong influence on the bending moment values which develop inside. The maximum axial force is not practically influenced by the lining elastic modulus and thickness. Both maximum bending moments and maximum axial forces increase in a linear way with the vertical load value; tunnel radius, \(K\) and RMR values of the rock mass have also a great influence on the maximum bending moment and axial force. Besides, it is possible to note how the absence of shear interaction between the lining and the rock mass causes bending moment values in the lining higher with respect to the case where the stiffness of the tangential springs at nodes equals to half the stiffness of the normal springs. For this reason, the neglectance of the shear interaction between the lining and the tunnel wall leads to an overdesign of the SC lining.  相似文献   

5.
Presented in this paper are results of two centrifuge tests on single piles installed in unimproved and improved soft clay (a total of 14 piles), with the relative pile–soil stiffness values varying nearly two orders of magnitude, and subjected to cyclic lateral loading and seismic loading. This research was motivated by the need for better understanding of lateral load behavior of piles in soft clays that are improved using cement deep soil mixing (CDSM). Cyclic test results showed that improving the ground around a pile foundation using CDSM is an effective way to improve the lateral load behavior of that foundation. Depending on the extent of ground improvement, elastic lateral stiffness and ultimate resistance of a pile foundation in improved soil increased by 2–8 times and 4–5 times, respectively, from those of a pile in the unimproved soil. While maximum bending moments and shear forces within piles in unimproved soil occurred at larger depths, those in improved soil occurred at much shallower depths and within the improved zone. The seismic tests revealed that, in general, ground improvement around a pile is an effective method to reduce accelerations and dynamic lateral displacements during earthquakes, provided that the ground is improved at least to a size of 13D × 13D × 9D (length × width × depth), where D is the outside diameter of the pile, for the pile–soil systems tested in this study. The smallest ground improvement used in these tests (9D × 9D × 6D), however, proved ineffective in improving the seismic behavior of the piles. The ground improvement around a pile reduces the fundamental period of the pile–soil system, and therefore, the improved system may produce larger pile top accelerations and/or displacements than the unimproved system depending on the frequency content of the earthquake motion.  相似文献   

6.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   

7.
The paper discusses the results of research devoted to the preservation of a natural heritage site carried out at Pravcicka Brana Rock Arch, the largest natural sandstone bridge in Europe, located in the Bohemian Switzerland National Park, Czech Republic. One of the objectives of the study was to explore natural diurnal and annual temperature oscillations at the shallowest part of the rock mass and to acquire an insight into the heat balance both at the surface and within the rock mass. In 2009, four thermocouples were embedded at two positions (eastern and western sides) in a longitudinal direction sequence: rock surface and three different depths 0.10, 0.40, and 0.90 m. Calculation of heat flux inside the rock mass was treated with Fourier’s series which analyzes periodic temperature variation into a set of harmonics of the dominant diurnal or annual waves. Based on the results of Fourier’s analysis, fundamental thermophysical parameters were determined. These were used as the input data to establish a numerical model of temperature distribution in the near surface depth and thermomechanical (kinematic) behavior of the rock arch. Apart from in situ temperature monitoring data, the displacement time series data for the period 1993–2012 recorded by portable crack gauges in 1-month intervals were available. Finally, the rate of displacements in the model simulations was analyzed and compared with those recorded by on site displacement monitoring. Model simulations detected the existence of thermally driven deformation comprising both quasi-cyclic (reversible) movements and irreversible (plastic) deformations which in fact affirm the idea that temperature oscillations are the most contributing factor to the total displacement rate observed at the Pravcicka Brana Rock Arch. Based on the results of model simulation, the authors address the key issue whether the actual deformation mechanism and dynamics will have any influence on the stability of the Pravcicka Brana Rock Arch.  相似文献   

8.
采用连续介质快速拉格朗日分析方法,模拟了含单一顺坡向结构面的危岩体边坡在地震荷载作用下的动力反应。基于时程分析法,分析了其动力响应规律,并简单探讨了失稳机理。发现了危岩体边坡的加速度和速度存在竖直放大效应和临空面放大效应。受结构面的影响,加速度、速度、位移和剪应力等的不连续现象明显,危岩体边坡的水平位移峰值在结构面以下向上逐渐减小、跨过结构面时突然增大、在结构面以上又向上逐渐减小,而危岩体上的位移放大系数明显比母岩上的大。有助于进一步研究结构面的动力特性和危岩体边坡的动力失稳机理。  相似文献   

9.
Tang  Yiqun  Xiao  Siqi  Yang  Qi 《Acta Geotechnica》2020,15(8):2205-2225

In order to reduce the effects of the low strength and high compressibility of soft soil, geosynthetic-reinforced pile foundations (GRPF) are widely applied for the construction of high-speed railways. Though its reinforcement effect is proved acceptable in practices so far, it is unclear whether it will keep this performance as the train speed continues increasing. Since it is impossible to study the problem in field tests, only mathematical and physical models can be used. However, the nonlinear behaviour of the soft soil complicates the use of analytical models. Therefore, this paper presents a small-scale model test to study the possible changes in stress distribution and deformation in the GRPF under increasing dynamic loads. One test with a natural foundation, without piles or geosynthetic, shows the difference with a similar construction with GRPF foundation. Furthermore, three GRPF tests show the influence of the embankment thickness. The results show the long-term dynamic loading significantly affects the dynamic stress and displacements of the subsoil between the piles of the GRPF. This effect can be divided into three stages with an increasing level of load amplitude: no impact, advantageous impact, and adverse impact. When the dynamic load reaches the adverse impact stage, the long-term dynamic loads reduce the dynamic pile–soil stress ratio, which means that more soil settlement will develop, because more dynamic stress is applied to the soft soil. The test results show that the reduction in dynamic stress on the subsoil in the GRPF construction is clearly lower than the dynamic stress on the natural foundation, due to the existence of rigid piles. Moreover, a thicker embankment gives significantly lower dynamic stresses on the subsoil between the piles. For the thickest embankment tested, the adverse impact stage was not found at all: the arching kept enhancing under long-term dynamic loading with high load amplitudes.

  相似文献   

10.
Thermoelastic deformation of rock significantly affects the stability of rock slope because thermoelastic strains may cause fracture propagation under favorable condition of failure. Rock slope stability depends on the balance between shear stress and shear resistance along the plane of weakness. Due to warming of rock slopes by heat transfer phenomena, viz. conduction and convection, considerable change in induced stresses (normal and shear) and resistance takes place which further causes instability in rock slope. In this paper, a two-dimensional finite element model has been used to simulate the stability of jointed rock slope containing crack in its upper surface. Four different cases have been simulated on the basis of infilling material (air, water, ice, water and ice) in the crack. Stability of rock slope is examined in terms of shear displacement and factor of safety for different thermal conditions of slope surface. A comparative study has been done for the four cases of infilling material in the crack. The various affecting parameters, viz. shear displacement, factor of safety, shear strength along the joint, and different surface temperature conditions, are illustrated by means of graphs. It has been found that the values of horizontal and vertical displacements are in the range of millimeters. The maximum values of horizontal and vertical displacements are 2.17 mm. Moreover, the maximum values of vertical compressive and tensile stresses are 15.4 MPa and 4.45 MPa respectively for the said four cases. According to the infilling material in the crack, the stability of the rock slope for the given geometry of slope is found in the following order: crack filled with ice < crack filled with ice and water < crack filled with water < empty crack. Validations of numerical results have been done from previous studies, and it has been found that the trends of normal stress, shear strength, and shear displacement along the joint are well matched.  相似文献   

11.
Rock reinforcement systems, such as resin-grouted rock bolts, display complex creep behavior because both grouting materials and bolts show time-dependent behavior. In this paper, only the time-dependent behavior of grouting material was investigated, in which creep tests of grouting material was conducted in triaxial compression apparatus at room temperature. The test specimens were provided from the Araldite epoxy resin used in rock reinforcement. We attempt to predict long-term creep parameter using triaxial creep tests and to define time-dependent characteristics of the bounding material. In short-term creep tests, three different axial and confining stress levels were applied in steps to each specimen. The transient creep for all the stress levels were described by power function which fit properly to time–strain curves. The maximum difference between the proposed model and experimental long-term creep strain was less than 7.1 %. It was observed that the creep rate of a grouting material specimen directly depends on the deviator of stress (i.e., σ1–σ3).  相似文献   

12.
微型钢管桩用于岩石基坑支护的作用机制分析   总被引:2,自引:0,他引:2  
刘小丽  李白 《岩土力学》2012,33(Z1):217-222
微型桩由于施工方便、快速在基坑工程中得到了广泛应用。以微型钢管桩-喷锚联合支护的岩石基坑工程为对象,通过数值模拟,分析微型钢管桩在岩石基坑支护中的作用机制。分析表明,当基坑地层中存在较厚的强风化岩层或性质较差的岩层时,设置在其中的微型钢管桩能有效地减小基坑水平位移,并合理调配预应力锚索的拉力,同时,微型钢管桩承受较大的弯矩和轴向压力,在设计中宜考虑微型钢管桩的有利作用,计算时应验算弯矩和轴向压力联合作用下微型钢管桩的安全性;设置在性质较好的中风化和微风化岩层中的微型钢管桩,对基坑作用很小,可考虑不设置微型钢管桩支护。  相似文献   

13.
The objective of this paper is to develop an efficient analytical method for assessing the vulnerability of low-rise reinforced concrete buildings subjected to seismically induced slow-moving earth slides. Vulnerability is defined in terms of probabilistic fragility curves, which describe the probability of exceeding a certain limit state of the building, on a given slope, versus the Peak Horizontal Ground Acceleration (PHGA) at the assumed “seismic bedrock”, allowing for the quantification of various sources of uncertainty. The proposed method is based on a two-step, uncoupled approach. In the first step, the differential permanent landslide displacements at the building’s foundation level are estimated using a dynamic non-linear finite difference slope model. In the second step, the calculated differential permanent displacements are statically imposed at the foundation level to assess the building’s response to differing permanent seismic ground displacements using a finite element code. Structural limit states are defined in terms of threshold values of strains for the reinforced concrete structural components. The method is applied to typical low-rise reinforced concrete frame buildings on shallow foundations with varying strength and stiffness characteristics (isolated footings and continuous slab foundation), standing near the crest of a relatively slow-moving earth slide. Two different slope models are selected representing a cohesive and a purely frictional soil material. The paper describes the method and the derived fragility curves for the selected building and slope typologies that could be used in quantitative risk assessment studies at site-specific and local scales.  相似文献   

14.
西南地区常见碎石土-基岩斜坡地基,在此类地基上的嵌岩桩基础,其上覆土层、嵌固段基岩多为倾斜。然而岩石试样中结构面倾角改变时,岩石试样的强度也随之发生变化。故当嵌固段基岩存在层面且层面具有倾角时,往往对桩基的水平承载特性影响很大,所以基岩层面是影响嵌岩桩水平承载性能的主要因素之一。本文采用物理模型试验,通过改变嵌固段基岩层面倾角,得出嵌固段基岩不同层面倾角对于桩顶位移,桩身内力的发展规律,进而研究其对水平受荷嵌岩桩承载性能的影响。试验结果表明:在碎石土-层状基岩斜坡地基场地中,嵌固段基岩存在层面会降低嵌岩桩水平承载性能。相对于完整基岩,嵌固段层状基岩存在水平层面时,临界荷载下降了17%、最大弯矩值下降了23%、最大剪力值下降了37.5%;而嵌固段基层层面为倾斜时,嵌岩桩水平承载性能下降的更多,且层面倾角为逆向30°时比顺向30°更加不利于嵌岩桩的水平受荷;桩身最大弯矩点与最大剪力点位置随嵌固段层状基岩倾角变化影响比较小,最大弯矩点位置几乎没有变化,最大剪力点位置在嵌固段基岩层面为顺向30°与逆向30°时下降了1倍桩径。该项研究可为在不同层面倾角下的层状岩体斜坡地基上受水平荷载的嵌岩桩设计作一定的指导。  相似文献   

15.
为了研究软岩地基桥桩的荷载传递性状、破坏机理,并获取在该地质条件下更为可靠的桩基计算参数,对秦巴山区软岩地基3根钻孔灌注试桩进行竖向静载试验。结果表明:秦巴山区软岩地基桥桩试桩荷载沉降曲线呈陡降型,实测竖向极限承载力为20 500kN,桩的破坏方式为桩身材料强度破坏;淤泥质亚黏土地层中的碎石起到一定的骨架作用,增强了此地层桩极限侧阻力,发挥极限侧阻力所需的桩土(岩)相对位移为4~8mm;强风化砾岩表现为加工软化型,发挥极限侧阻力所需的桩土(岩)相对位移为3~8mm;中风化砂砾岩表现为明显的加工硬化型,所需的桩岩相对位移大,且桩极限侧阻力的特征点不明显;淤泥质亚黏土地层桩侧阻力占总荷载的60%~70%,随着桩顶荷载的逐步加大,该地层桩侧阻力所占比例不断下降,而嵌岩段桩侧阻力所占比例逐渐上升,达到55%~65%,嵌岩段桩侧阻力沿桩深的分布曲线表现出非线性的特征;试桩为端承摩擦桩,桩端阻力约占桩顶荷载的20%左右,且未充分发挥,在上部结构允许的沉降范围内,适当增加桩端的沉降有利于端阻力的发挥;桩侧阻力先于端阻力发挥,建议单桩承载力设计时分别采用不同的端阻力和侧阻力安全系数。  相似文献   

16.

This paper describes the main features related to lateral displacements with depth after successive lateral loading–unloading cycles applied to the top of reinforced-concrete flexible bored piles embedded in naturally bonded residual soil. The bored piles under study have a cylindrical shape, with 0.40-m in diameter and 8.0-m in length. Both bored piles types (P1 and P2) include an embedded steel pipe section in their center as longitudinal steel reinforcements: pile type P1 has another 16 steel rods as steel reinforcement to concrete while pile type P2 has no further steel reinforcement. Pile type P1 has three times as much stiffness (EI) and four and a half times the plastic moment (My) than pile type P2. A similar load–displacement performance was observed at initial loads as for small displacements of both piles. At this initial loading stage, the response of the reinforced concrete piles is a function of the soil characteristics and of a linear elastic pile deformation. During this stage, piles can even be understood as probes for evaluating soil reactions. For larger horizontal displacements, after the concrete section starts undergoing large deformations, approaching the ultimate bending moment, pile behavior and consequently the load–displacement relation starts to diverge for both piles. For pile P1 the values of relevant lateral displacements are extended to about 2.5-m in depth, while for pile P2 lateral displacements are mostly constrained to about 2.0-m in depth. Measurements of horizontal displacements of pile P1 against depth recorded with a slope indicator show that, after unloading, lateral loads at distinct stages (small and near failure loads), exhibits a much higher elastic phase of the system response. An analytical fitting model of soil reaction is proposed based on the measured displacements from slope indicator. The integration of a continuous model proposed for the soil reaction agrees fairly well with the measured displacements up to moments close to plastic limit. Results of load–displacement show that the stiffer pile (P1) was able to mobilize twice as much lateral load compared to pile P2 for a service limit displacement of about 20 mm. The paper shows results that enable the isolation of the structural variable through real scale pile load tests, thus granting understanding of its importance and enabling its quantitative visualization in examples of piles embedded in residual soil sites.

  相似文献   

17.
This paper addresses the effects of randomness of initial damage in a rock mass and the critical tensile strain of the rock material on its dynamic responses and damage under explosive loads. A fuzzy definition is proposed to describe the fuzzy nature of failure phenomenon in a rock mass. The initial damage of the rock mass is estimated using the longitudinal and transverse elastic wave velocities. By using statistical analysis, the initial damage of the rock mass is found having the Beta distribution. The statistical estimation of a damage state and properties of randomly damaged rock mass are evaluated by the Rosenbluth's point estimate method. In numerical calculation, an isotropic continuum damage model with the initial damage and the cumulative damage dependent on an equivalent tensile strain is suggested to model the rock mass behavior under blast loads. A Beta distribution is proposed to represent the probabilistic distribution of the damage variable of the rock mass under explosive loads. Several types of membership functions are suggested to represent the fuzziness of material failure. Based on the fuzzy–random probabilistic theory, a model including both the effects of randomness and fuzziness is proposed for the failure analysis of rock mass under explosive loads. The suggested models are coded and linked with an available computer program AUTODYN2D through its user's subroutine capacity. The fuzzy failure probability and dynamic responses of the rock mass are calculated. Numerical results are compared with those obtained from independent field tests.  相似文献   

18.
A powder neutron diffraction study of ussingite, Na2AlSi3O8(OH), over the temperature range 4–850 K has been undertaken. The strong hydrogen bond that exists in this mineral has been accurately determined with the O–H distance at 1.070(8) Å and an O(donor)–O(acceptor) separation of 2.481(5) Å at 4 K, The distribution of hydrogen along the O–O direction remains asymmetric between 4 and 850 K with the H atom being fully ordered at a single site, rather than partially disordered over two sites of a double-potential well, as in serandite. A gradual increase in the bonded O–H distance at higher temperatures is observed, indicative of a broadening of the potential well in which the hydrogen atom is sited. Below 50 K, the material shows negative thermal expansion, likely to be associated with reduced bending motion of the O–H bond.  相似文献   

19.
张治国  赵其华  徐晨  胡力绳 《岩土力学》2016,37(7):2011-2020
邻近建筑物进行基坑开挖会使桩基产生附加变形和内力,降低其承载能力,如果桩基变形过大会威胁到上部结构的安全。针对该领域目前存在的三维有限元数值模拟法建模复杂且计算耗时的现状,同时为了充分利用基坑围护位移较易通过现场监测技术获取的优势,提出了基于影像源法的基坑开挖引起邻近单桩变形影响的两阶段简化分析方法。同时,引入了Kerr地基模型,并针对Winkler地基模型进行改进,弥补了Winkler地基不能考虑土体连续性的缺陷。在第1阶段基于影像源法,由基坑围护变形计算基坑开挖引起的土体水平自由场位移;第2阶段分别基于Winkler和Kerr地基模型,将土体自由场位移施加于桩基,建立桩基在被动位移扰动下的微分控制方程,得到基坑开挖对邻近桩基影响的简化解析解,包括基坑开挖引起桩基的水平位移、弯矩和剪力等。将计算结果与既有理论结果、监测数据以及三维有限元数值模拟结果进行对比,取得了较好的一致性,其中基于Kerr地基模型的简化解比基于Winkler地基模型的简化解更为精确。该简化方法可为有效分析基坑开挖对邻近桩基的变形影响提供一定理论依据。  相似文献   

20.
After describing the kinematics of a generic rigid block subjected to large rotations and displacements, the Udwadia's General Principle of Mechanics is applied to the dynamics of a rigid block with frictional constraints to show that the reaction forces and moments are indeterminate. Thus, the paper presents an incremental‐iterative algorithm for analysing general failure modes of rock blocks subject to generic forces, including non‐conservative forces such as water forces. Consistent stiffness matrices have been developed that fully exploit the quadratic convergence of the adopted Newton–Raphson iterative scheme. The algorithm takes into account large block displacements and rotations, which together with non‐conservative forces make the stiffness matrix non‐symmetric. Also included in the algorithm are in situ stress and fracture dilatancy, which introduces non‐symmetric rank‐one modifications to the stiffness matrix. Progressive failure is captured by the algorithm, which has proven capable of detecting numerically challenging failure modes, such as rotations about only one point. Failure modes may originate from a limit point or from dynamic instability (divergence or flutter); equilibrium paths emanating from bifurcation points are followed by the algorithm. The algorithm identifies both static and dynamic failure modes. The calculation of the factor of safety comes with no overhead. Examples show the equilibrium path of a rock block that undergoes slumping failure must first pass through a bifurcation point, unless the block is laterally constrained. Rock blocks subjected to water forces (or other non‐conservative forces) may undergo flutter failure before reaching a limit point. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号