首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Identification and characterization of active faults and deciphering their seismic potential are of vital importance in seismic hazard assessment of any region. Seismic vulnerability of India is well known as more than 60 % of its area lies in high hazard zones due to the presence of major active faults in its plate boundaries and continental interiors, which produced large earthquakes in the past and have potential to generate major earthquakes in future. The safety of critical establishments, like Power plants, Refinaries and other lifeline structures is a major concern in these areas and calls for a better characterization of these faults to help mitigate the impact of future earthquakes. The paper provides a brief overview of the work carried out in India on active fault research, its limitations and immediate priorities.  相似文献   

2.
Lin  Tzu-Hsuan  Huang  Jing-Ting  Putranto  Alan 《Natural Hazards》2022,110(1):765-786
Natural Hazards - Earthquakes as a natural hazard have caused substantial economic losses and human life loss in many countries. Taiwan, which is located on the western Circum-Pacific seismic belt,...  相似文献   

3.
Areas of low strain rate are typically characterized by low to moderate seismicity. The earthquake catalogs for these regions do not usually include large earthquakes because of their long recurrence periods. In cases where the recurrence period of large earthquakes is much longer than the catalog time span, probabilistic seismic hazard is underestimated. The information provided by geological and paleo-seismological studies can potentially improve seismic hazard estimation through renewal models, which assume characteristic earthquakes. In this work, we compare the differences produced when active faults in the northwestern margin of the València trough are introduced in hazard analysis. The differences between the models demonstrate that the introduction of faults in zones characterized by low seismic activity can give rise to significant changes in the hazard values and location. The earthquake and fault seismic parameters (recurrence interval, segmentation or fault length that controls the maximum magnitude earthquake and time elapsed since the last event or Te) were studied to ascertain their effect on the final hazard results. The most critical parameter is the recurrence interval, where shorter recurrences produce higher hazard values. The next most important parameter is the fault segmentation. Higher hazard values are obtained when the fault has segments capable of producing big earthquakes. Finally, the least critical parameter is the time elapsed since the last event (Te), when longer Te produces higher hazard values.  相似文献   

4.
Bommer  J.  McQUEEN  C.  Salazar  W.  Scott  S.  Woo  G. 《Natural Hazards》1998,18(2):145-166
The republic of El Salvador in Central America is an area of high seismic hazard where at least twelve destructive earthquakes have occurred this century alone. The principal sources of seismic hazard are earthquakes associated with the subduction of the Cocos plate in the Middle America Trench and upper-crustal earthquakes in the chain of Quaternary volcanoes that runs across the country parallel to the subduction trench. Hazard assessments for Central America have suggested almost uniform distribution of hazard throughout El Salvador. Seismic zonations for three successive building codes in El Salvador simply divide the country into two regions, with the higher hazard zone containing the volcanoes and the coastal areas. Historical records suggest that the greatest hazard is posed by the upper-crustal earthquakes concentrated on the volcanic centres which, although of smaller magnitude than the subduction events, are generally of shallow focus and coincide with the main population centres. These earthquakes have repeatedly caused intense damage over small areas in the vicinity of some of the main volcanoes. This study focuses on El Salvador to explore the capability of different approaches to hazard assessment to reflect significant variations of seismic hazard within small geographical areas. In the study, three 'zone-free' methods are employed as well as the Cornell–McGuire approach. The results of the assessments are compared and their implications for seismic zoning for construction and insurance purposes are discussed.  相似文献   

5.
青藏高原板内地震震源深度分布规律及其成因   总被引:6,自引:0,他引:6  
青藏高原板内地震以浅源地震为主, 下地壳基本上没有地震, 地震震源多集中在15~40 km的深度范围, 主要在中地壳内, 呈似层状弥散分布.其中30~33 km深度是一个优势层, 与壳内分层有关.总体上青藏高原南、北部的震源面略呈相向倾斜特征.70~100 km深度区间出现了比较集中的震级较小的地震, 可能与壳幔过渡带的拆离作用有关.高原内部的正断层系与板内地震密切相关, 是板内浅源地震的主控构造.总之, 青藏高原地震震源沿着活动的上地壳脆性层与软弱层之间的脆-韧性过渡带分布.这些板内地震活动属于大陆动力学过程, 与板块碰撞和板块俯冲无关.初步认为青藏高原浅层到深层多震层的成因分别是韧性基底与脆性盖层、韧性下地壳与脆性上地壳、韧性下地壳与脆性上地幔的韧-脆性转换、拆离和解耦的产物.   相似文献   

6.
Active fault zones of Armenia, SE Turkey and NW Iran present a diverse set of interrelated natural hazards. Three regional case studies in this cross-border zone are examined to show how earthquakes interact with other hazards to increase the risk of natural disaster. In northern Armenia, a combination of several natural and man-made phenomena (earthquakes, landslides and unstable dams with toxic wastes) along the Pambak-Sevan-Sunik fault (PSSF) zone lowers from 0.4 to 0.2–0.3g the maximum permissible level (MPL) of seismic hazard that may induce disastrous destruction and loss of life in the adjacent Vanadzor depression.

In the Ararat depression, a large active fault-bounded pull-apart basin at the junction of borders of Armenia, Turkey, Iran and Azerbaijan, an earthquake in 1840 was accompanied by an eruption of Ararat Volcano, lahars, landslides, floods, soil subsidence and liquefaction. The case study demonstrates that natural hazards that are secondary with respect to earthquakes may considerably increase the damage and the casualties and increase the risk associated with the seismic impact.

The North Tabriz–Gailatu fault system poses a high seismic hazard to the border areas of NW Iran, eastern Turkey, Nakhichevan (Azerbaijan) and southern Armenia. Right-lateral strike–slip motions along the North Tabriz fault have given rise to strong earthquakes, which threaten the city of Tabriz with its population of 1.2 million.

The examples illustrate how the concentration of natural hazards in active fault zones increases the risk associated with strong earthquakes in Armenia, eastern Turkey and NW Iran. This generally occurs across the junctions of international borders. Hence, the transboundary character of active faults requires transboundary cooperation in the study and mitigation of the natural risk.  相似文献   


7.
震级-频度分布(FMD)是地震学研究中最重要的经验公式之一,相关系数b是构造学和地震危险性评估的重要因子,具有表征前震和余震的特性。辽宁省地震多发生在金州断裂附近,自1975年海城7.3级地震发生后,与金州断裂交汇的海城河—大洋河断裂开启活跃模式,其东南端岫岩附近在1999年又发生5.6级地震。近年来盖州附近地震活动也在增强。因此,本文利用b值空间分布特征对海城及其邻区的应力分布特点进行研究。震源定位准确与否直接影响b值计算,双差定位后的数据与常规目录相比具有更高的精度,但是完整性有一定下降。本文收集了中国地震台网1981—2005年的辽宁省地震目录,并进行双差定位,比较分析了常规目录数据和双差数据的b值分布差异,认为在地震密集区,双差定位后的数据可以被用来获得更准确的b值。对主要研究区进行网格划分,使用双差数据,得到b值的水平和垂直分布特征。结果表明:b值为0.6~1.8,随深度增加而降低;岫岩和盖州震区具有较低的b值,意味着具有较高的地震危险性;浑河震区与海城河—大洋河断裂东南方向具有较高的b值,说明该区域未来发生大地震的概率很低;与金州断裂交汇区域的b值在1.0附近,说明该地区应力暂时处于稳定状态,未来具有较低的地震危险性。  相似文献   

8.
建筑物的地震安全性是城市规划和建设过程首先要回答的问题。我国城市地震安全性评价的方法理论多针对地上建筑物,而对地下空间的地震安全性研究较为薄弱,严重滞后于城市发展对地下空间的需求。活断层是诱发地震、导致建筑物破坏的的直接因素。考虑到空间关系上,地下空间与断层之间的交互关系为相交或相离。因此,本文将地下空间分为两类:与断层相交的地下空间称为跨断层地下空间,远离断层的地下空间称为远离断层地下空间。本文尝试将断裂带同震地表破裂、地震峰值加速度、地震烈度等地表地震安全性评价考量的要素与地下空间埋藏深度建立联系,并在此基础上总结基于震害统计的地下空间地震安全性评价方法。最后,本文选取地下空间利用需求较高的深圳和北京地区为实例进行介绍。  相似文献   

9.
基于辽宁地区主要活动断裂的几何特征和空间展布,对1980年以来辽宁地区ML≥2.0地震的累计频次和1900年以来Ms≥5.0地震的年发生率的空间分布及其与活动断裂构造背景关系进行研究,获得了基于地震学的辽宁省内主要断裂和构造区(带)的活动性与地震危险性的初步评估结果。辽宁地区主要断裂活动性较高的有海城河断裂、金州断裂九寨—盖州北段、朝阳—北票断裂等;辽宁地区未来3年发生Ms≥5.0地震危险性较高的断裂依次有海城河断裂、金州断裂、熊岳—庄河断裂、鸭绿江断裂及赤峰—开原断裂与柳河断裂交汇处等。在判定区域地震危险性和城市地震风险时,除了依据前兆异常的空间分布,还应充分考虑区内主要构造(断裂)的活动性与地震危险性。  相似文献   

10.
11.
Hamdache  Mohamed 《Natural Hazards》1998,18(2):119-144
In the present study, the seismic hazard in northern Algeria is estimated using both physical strain energy release and Gumbel's extreme values approaches. For six of the most industrial and populated cities in Algeria, seismic hazard is assessed and examined in greater detail. Gumbel's extreme values approach has been used to estimate seismic hazard in terms of magnitude and P.G.A at each point of an equispaced grid all over the north of Algeria. An average attenuation relationship for PGA has been provided using known relations which have been established in regions with similar attenuation characteristics.The results are presented mainly in the form of graphs and contour maps of magnitudes (respectively PGA) with a 60% probability of not being exceeded in the next 100 and 200 years. Globally, they give main features of northern Algeria in terms of zoning (as well as in terms of magnitude and in terms of PGA). They corroborate the ones obtained through other works, especially in the basin areas (Mitidja, Cheliff, Soumam and Constantine Basin).  相似文献   

12.
Northwestern Algeria, Tell Atlas chain, belongs to the converging Africa-Eurasia plate boundary. Several active faults have been previously identified and several earthquakes occurred in the past. In the present study, seismites are observed in the Quaternary deposits. The identified seismites include injection sand dykes, pillar structures, pillow structures, load-cast structures, water escape structures, sismoslumps, thixotropic wedges, and thixotropic bowls. The following arguments support their seismic origin: (i) presence of active faults able of producing strong earthquakes, (ii) the granulometric characteristics of the deposits are favorable to liquefaction, (iii) the observed features, mainly those related to water escape structures, are comparable to those observed in modern earthquakes. Therefore, such features are evidence of the occurrence of earthquakes of M?>?5.5 magnitude in this study area, which may occur in the future.  相似文献   

13.
Earthquake Hazard Assessment in the Oran Region (Northwest Algeria)   总被引:4,自引:1,他引:4  
Bouhadad  Youcef  Laouami  Nasser 《Natural Hazards》2002,26(3):227-243
This paper deals with the probabilistic seismic hazard analysis carried out in the Oran region, situated in the Northwest of Algeria. This part of Algeriawas historically struck by strong earthquakes. It was particularly affected during theOctober 9, 1790 Oran earthquake of intensity X. The main purpose of this work is to assessseismic hazard on rocks in order to provide engineers and planners with a basic tool for seismicrisk mitigation. The probabilistic approach is used in order to take into account uncertaintiesin seismic hazard assessment. Seismic sources are defined in the light of the most recentresults obtained from seismotectonics analyses carried out in North Algeria.Source parameters such as b-values, slip rate and maximum magnitude are assessed for eachseismic source. The attenuation of ground shaking motion with distance is estimated byusing attenuation relationships developed elsewhere throughout the world (Sadigh et al., 1993; Ambraseys and Bommer, 1991). The two relationships agree well with the local data. Differentchoices of source parameter values and attenuation relationships are assigned weights in alogic tree model. Results are presented as relationships between values of peak groundacceleration (PGA) and annual frequency of exceedance, and maps of hazard for returnperiods of 200 years and 500 years. A maximum peak ground acceleration of 0.42 g is obtainedfor the Oran site for a return period of 500 years.  相似文献   

14.
We investigated the Coulomb stress changes in the active faults surrounding a moderate‐magnitude normal‐faulting earthquake (2009 L'Aquila, Mw 6.3) and the associated variations in the expected ground motion on regional probabilistic seismic hazard maps. We show that the static stress variations can locally increase the seismic hazard by modifying the expected mean recurrence time on neighbouring faults by up to ~290 years, with associated variations in the probability of occurrence of the maximum expected earthquake of up to ~2%. Our findings suggest that the increase in seismic hazard on neighbouring faults following moderate‐magnitude earthquakes is probably not sufficient to necessitate systematic upgrades of regional probabilistic seismic hazard maps, but must be considered to better address and schedule strategies for local‐scale mitigation of seismic risk.  相似文献   

15.
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.  相似文献   

16.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   

17.
Estimation of seismic hazard in Gujarat region, India   总被引:1,自引:1,他引:0  
The seismic hazard in the Gujarat region has been evaluated. The scenario hazard maps showing the spatial distribution of various parameters like peak ground acceleration, characteristics site frequency and spectral acceleration for different periods have been presented. These parameters have been extracted from the simulated earthquake strong ground motions. The expected damage to buildings from future large earthquakes in Gujarat region has been estimated. It has been observed that the seismic hazard of Kachchh region is more in comparison with Saurashtra and mainland. All the cities of Kachchh can expect peak acceleration in excess of 500?cm/s2 at surface in case of future large earthquakes from major faults in Kachchh region. The cities of Saurashtra can expect accelerations of less than 200?cm/s2 at surface. The mainland Gujarat is having the lowest seismic hazard as compared with other two regions of Gujarat. The expected accelerations are less than 50?cm/s2 at most of the places. The single- and double-story buildings in Kachchh region are at highest risk as they can expect large accelerations corresponding to natural periods of such small structures. Such structures are relatively safe in mainland region. The buildings of 3?C4 stories and tall structures that exist mostly in cities of Saurashtra and mainland can expect accelerations in excess of 100?cm/s2 during a large earthquake in Kachchh region. It has been found that a total of 0.11 million buildings in Rajkot taluka of Saurashtra are vulnerable to total damage. In Kachchh region, 0.37 million buildings are vulnerable. Most vulnerable talukas are Bhuj, Anjar, Rapar, Bhachau, and Mandvi in Kachchh district and Rajkot, Junagadh, Jamnagar, Surendernagar and Porbandar in Saurashtra. In mainland region, buildings in Bharuch taluka are more vulnerable due to proximity to active Narmada-Son geo-fracture. The scenario hazard maps presented in this study for moderate as well as large earthquakes in the region may be used to augment the information available in the probabilistic seismic hazard maps of the region.  相似文献   

18.
The studied region is located at the junction between the Pacific and Central Asian seismoactive belts. Macroseismic data on earthquakes of this region are available for the last 150 years, while instrumental seismological observations began in the mid-20th century; however, the recurrence interval of strong earthquakes can be up to several centuries and even thousands of years. In this respect, many areas of the Amur region had been believed to be nearly aseismic until earthquakes occurred there. Paleoseismogeological studies of recent years have allowed the character of Holocene displacements to be estimated for some of the main regional structures. As a result, the main tendencies of the Late Quaternary geological evolution of the region remain uncertain and the potential seismogenerating structures are not completely known. Therefore the problem of revealing new zones and periods of seismic activity is topical for the entire Amur region. The importance of this problem is related to the weak degree of study of the region by contemporary methods of active tectonics, the intensive development of engineering infrastructure, which is vulnerable to seismic impacts, and the necessity of long-term seismic forecasting. The present work provides the results of paleoseismogeological studies of the active faults in the Amur region. On the basis of new data on the magnitude potential of seismogenerating structures based on the magnitudes of historical earthquakes and instrumentally recorded ones, we have estimated the seismic effects from strong deep-focus earthquakes and the attenuation coefficients and calculated radii of the first three isoseismals for crustal earthquakes. By using the methods of statistical modeling, we distinguish the periods when seismic effects increased from earthquakes with 2 ≤ M ≤ 6. It is shown that seismic hazard assessment should take into account the dynamics of the seismic regime, caused by the change of the earthquake source depth. It is found that the epicenters of earthquakes with 5 ≤ M ≤ 6 form non-crossing seismic zones in different phases of changes in the Earth’s annual rotation.  相似文献   

19.
Generally the seismic hazard of an area of interest is considered independent of time. However, its seismic risk or vulnerability, respectively, increases with the population and developing state of economy of the area. Therefore, many areas of moderate seismic hazard gain increasing importance with respect to seismic hazard and risk analysis. However, these areas mostly have a weak earthquake database, i.e., they are characterised by relative low seismicity and uncertain information concerning historical earthquakes. In a case study for Eastern Thuringia (Germany), acting as example for similar places in the world, seismic hazard is estimated using the probabilistic approach. Because of the lack of earthquakes occurring in the recent past, mainly historical earthquakes have to be used. But for these the actual earthquake sources or active faults, needed for the analysis, are imprecisely known. Therefore, the earthquake locations are represented by areal sources, a common practice. The definition of these sources is performed carefully, because their geometrical shape and size (apart from the earthquake occurrence model) influence the results significantly. Using analysis tools such as density maps of earthquake epicentres, seismic strain and energy release support this. Oversizing of areal sources leads to underestimation of seismic hazard and should therefore be avoided. Large location errors of historical earthquakes on the other hand are represented by several alternative areal sources with final superimposition of the different results. In a very similar way information known from macroseismic observations interpreted as source rather than as site effects are taken into account in order to achieve a seismic hazard assessment as realistic as possible. In very local cases the meaning of source effects exceeds those of site effects very likely. The influence of attenuation parameter variations on the result of estimated local seismic hazard is relatively low. Generally, the results obtained by the seismic hazard assessment coincide well with macroseismic observations from the thoroughly investigated largest earthquake in the region.  相似文献   

20.
前言全球每年平均发生地震约500万次。这些地震绝大多数分布在巨大构造板块接合处:它们是环太平洋带、地中海-喜马拉雅带、大西洋、北冰洋、印度洋及太平洋东侧的中脊地带以及大陆裂谷系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号