首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the tip metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The twomica albite gneisses have ^206 pb/^204 Pb=17. 657 -18. 168, ^207pb/^204 Pb=15. 318-15. 573,^ 208Pb/^204ob=38.315-38. 990, and the eclogites have ^206Pb/^204 Pb=17. 599 -18. 310, ^207Pb/^204 Pb=15. 465 -15. 615,^208Pb/^204Pb=37. 968-39. 143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have ^206Pb/^204 Pb=17. 128- 17. 434,^207Pb/^204pb=15. 313-15. 422 and ^208Pb/^204Pb=37. 631-38. 122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.  相似文献   

2.
Based on the data of 64 samples ,the REE geochemical characteristics of volcanic rocks in northern Zhejiang and eastern Jiangxi provinces are discussed in this paper.The REE distribution patterns in acid and intermediate-acid volcanic rocks in these areas display some similarities,as indicated by rightward-inclined V-shaped curves with negative Eu anomalies,which are parallel to earch other.In addi-tion,their REE parameters(ΣREE,ΣLREE/ΣHREE,δEu,Ce/Yb,La/Sm,La/Yb,etc)also va-ry over a narrow range with small deviations.HREE are particularly concentrated in the volcanic rocks as-sociated with uranium mineralization.The initial ^87Sr/^86Sr ratio in the volcanic rocks is about 0.7056-0.7139.All these features in conjunction with strontium isotopic data indicate that the rock-forming materials come from the sialic crust.The REE distribution patterns and REE geochemical parameters of the volcanic rocks ,as well as La/Sm-La and Ce/Yb-Eu/Yb diagrams may be applied to the sources of rock-forming and ore-forming materials.  相似文献   

3.
Wudalianchi volcanic rocks are the most typical Cenozoic potassic volcanic rocks in easten China.Compositional comparisons between whole rocks and glasses of various occurrences indicate that the magma tends to become rich in silica and alkalis as a result of crystal differentiation in the course of evolu-tion.They are unique in isotopic composition with more radiogenic Sr but less radiogenic Pb.^87Sr/^86Sr is higher and ^143Nd/^144Nd is lower than the undifferentiated global values.In comparison to continental pot-ash volcanic rocks,Pb isotopes are apparently lower.These various threads of evidence indicate that the rocks were derived from a primary enriched mantle which had not been subjected to reworking and shows no sign of incorporation of crustal material.The correlation between Pb and Sr suggests the regional heterogeneity in the upper mantle in terms of chemical composition.  相似文献   

4.
Many igneous rocks distribute in Gejiu tin polymetallic ore-field at Yunnan province, rocks including basalt, gabbro, mafic microgranular enclaves, granites (porphyritic granite and equigranular granite) and akaline rocks. The ages of the granites and akaline rocks which are considered to have genetic connecting with the mineralization have been comfirmed, but the gabbro-mafic microgranular enclaves-granite assemblage’s ages are still unknown. By means of LA-ICP-MS zircon U-Pb dating, the data of Shenxianshui equigranular granite, the mafic microgranular enclave in Jiasha area, the host rock of the mafic microgranular enclaves and the Jiasha gabbro are around ~80 Ma. Besides the above mentioned data, a group of new ages at ~30 Ma were discovered in this study, which is from gabbro and mafic microgranular enclaves. Based on the previous data and the new data gained this time, we suggest the major geochronology framework of the magmatism and mineralization events in Gejiu area is ~80 Ma, which is consistent with the Late Cretaceous magmatism and mineralization events in the whole southeast Yunnan and west Guangxi area and they were suggested to belong to the same geotectonic setting in late Yenshannian. And the new ages of the ~30 Ma obtained in this study is considered to represent a responding to the complicate tectonic evolution history of the Tibetan orogenic events in Cenozoic.  相似文献   

5.
The zircon SHRIMP dating age for the Shangyou granites is 464±11 Ma. The geological feature of the pluton is consistent with the isotopic age, which shows that it is a product of Caledonian orogenesis. The Shangyou granites are regarded as peraluminous crust-derived granites to possess the typical geochemical characteristics of calc-alkaline rocks on the active continental margin with enriched Si, K, Al (A/CNK -- 1.11 on average), HREE, Rb, U, Th and heavily depleted V, Cr, Co, Ni, as well as Ti-Y, Nb-Ta, Zr, Sr, P and Ba, to be commonly corundum normative (av C -- 1.44). The Shangyou granites with higher 87Sr/86Sr ratios (0.707126-0.712186), ENd(t) values (-7.29 to -10.22) and (tDM) values (1.52-1.63 Ga), which are considered to result from partial melting of continental crust metamorphic sedimentary rocks with relatively low of crust maturation degree corresponding to the Middle Proterozoic, to have some possible contributions of mantle-derived components. The Shangyou granites are regarded as post-collision granites, which were formed in a transitional tectonic setting from compression to extension in the Middle Ordovician period after the Yangtze plate was subducted beneath the Cathaysian plate. The Ar-Ar total ages of K-feldspar and biotite are 292.1 Ma and 295.5 Ma respectively, which have recorded information of a late-stage thermal alteration event.  相似文献   

6.
In this paper the authors present the REE concentrations and Sr and Nd isotopic compositions of fluorites from the Bailashui tin deposit of the Furong ore field, southern Hunan Province. The results showed that the total amount of REE in fluorites is usually low, ranging from 0.705 to 8.785 μg/g with the chondrite-normalized REE distribution patterns similar to those of the Qitianling granites in the study area, characterized by LREE-enrichment patterns with pronounced negative Eu anomalies. The fluorites vary in Sr isotopic composition within the range of 0.7083-0.7091, the values are lower than those of the granites and higher than those of the host carbonate rocks in this area. The εNd(t) values of fluorites vary between -9.4 and +10.3, revealing that both the crust- and mantle-source materials were involved in the ore-forming hydrothermal fluids. Combined with previous studies on this ore deposit, the Bailashui tin deposit is temporally and spatially closely related with granitic magmatism in this area. The hydrothermal fluorites are the product of fluid/rock interactions between granitic magmatic hydrothermal fluid and marine carbonate rocks. The REE and F in the ore-forming fluid were derived from the granites, whereas Sr in the ore-forming fluid came mainly from the granitic magmatic hydrothermal fluid and marine carbonate rocks, although variations in Sr isotopic composition cannot be explained by a simple mixture of these two end-members. Evidence demonstrated that the ore-forming fluids are of crustal-mantle mixing origin, but that the fluids were probably incompletely homogenized and this may be caused by inhomogeneous mixing of the fluids of different sources.  相似文献   

7.
The Phanerozoic granitoid rocks include the Caledonian,Indosinian and Yenshanian granitoid rocks.The existence of Caledonian and Indosinian granites was evidenced by zircon U-Pb ages,The study of the characteristics of major,trace and rare-earth elements,isotopic composition and petrogenesis for the granitoid rocks has been made,The Caledonian and Indosinian granites were derived from partial melting of the Proterozoic basement rocks and the two tectonic activities were weak,The Yenshanian grantoid rocks were derived from mixing of mantle and crustal materials,It implies that the crustal accretion took place in Mesozoic time.  相似文献   

8.
Sr isotope studies of surficial waters have highlighted that differences in the ^87Sr/^86Sr ratio and Sr concentration are primarily caused by mixing of waters of various origins with specific isotopic and chemical characteristics, resulting from water-rock interaction processes. In this paper we reported the first Sr isotopic ratios, coupled with water chemistry, the measurement was carried out on samples related to (1) the Amo River (Tuscany, central-northern Italy), between the source and the mouth, (2) the most important tributaries and to (3) the thermal water discharges seeping out in the southern part of the basin. The main goals are: a) to use the ^87Sr/^86Sr ratio as a discriminative parameter of source areas, b) to define its variation along both the main course and principal tributaries, and c) to estimate the effects of the mixing process of the different end-embers. The outcropping rocks in the Amo River Basin are predominantly sedimentary, mainly made up of Mesozoic limestones, Oligocene sandstones and Plio-Pleistocene marine-lacustrine formations. Triassic and Mesosinian evaporites crop out in the Elsa and Era reaches, whereas Paleozoic quartzitic formations occur in the Mrs. Pisani area. Strontium isotopic composition is generally controlled by lithology and does not seem to be affected by anthropic input and flow rate. The ^87Sr/^86Sr ratios in the Arno Basin vary between 0.707963 and 0.712743, the highest ratios being related to waters circulating in the Palezoic rocks and Oligocene sandstone formations. Less radiogenic values pertain to the Elsa and Era tributaries where contributions related to the dissolution of evaporitic sequences, and mixing processes with the thermal discharges have been distinguished. The tributaries show that water samples in the pristine area have higher ^87Sr/^86Sr ratios than the respective tributaries from which water samples were collected near the confluence. Eventually, water samples collected along the Arno River, close to the mouth, tend to have Sr isotopic ratios similar to those of the present seawater.  相似文献   

9.
The Mesozoic volcanic rocks in the coastal region of southeastern China were superimposed on some different basement tectonic elements. The volcanic rocks developed in these different basement tectonic elements have great differences in Sr and Nd isotopic compositions. The rocks in western Zhejiang and northeastern Jiangxi Provinces which belong to the Lower Yangtze subplate have lower initial 87Sr/ 86Sr ratios, but are higher in initial Nd isotopic ratios. The initial 143Nd / 144Nd values of the volcanic rocks developed in the Cathaysian subplate increase clearly from early to late in time, and from the core of the Wuyishan uplift coastwards constantly, but the initial 87Sr/86Sr values tend to decrease. The isotopic characteristics and their spatial variations in Mesozoic volcanic rocks in the study region are, to a great extent, manifestations of the isotopic characteristics in basement metamorphic complexes, and the generation of the Mesozoic acid magma in this region is attributed to the recycling o  相似文献   

10.
Abstract:In this study, whole-rock geochemical and Nd isotopic data, as well as detrital zircon Hf isotopes of Palaeoproterozoic metasedimentary rocks from the Jiangxian Group are presented to evaluate the characteristics of their provenance and the tectonic history. The major and trace element compositions are comparable to Post-Archean upper continental crust (PA-UCC), but have slight enrichment in the LILE, with the exception of Cs and Sr, and a slight depletion in ferromagnesian elements, HFS elements, such as Nb and Ta, and some major elements, such as CaO and Na2O. The geochemical data reveal that the collected metasedimentary rocks have experienced intermediate source weathering with chemical index of alteration values ranging from 72 to 78, varying degrees of K-metasomatism, and post-depositional loss of Na, as well as negligible sorting, and are derived from the weathering of mostly felsic and non-mafic rocks. The selected Lu–Hf isotopic analysis on detrital zircon points to both the Trans-North China Orogen and Eastern Block of the north China craton as the most likely sources for the metasedimentary rocks of the Jiangxian Group. However, a contribution of detritus from the Western Block of the north China craton can be ruled out. The sediments were probably deposited in a back-arc basin within an active continental margin setting.  相似文献   

11.
The formation depth of metamorphic rocks in the Dabie ultrahigh pressure metamorphic (UHPM) zone influences not only our understanding of formation mechanism and evolution processes of collision orogenic belt, but also the studies on earth's interior and geodynamic processes. In this study, the isotopic data of metamorphic rocks in the Dabie UHPM zone are discussed to give constraints on the formation depth in the Dabie UHPM zone. The εSr of eclogite in the Dabie UHPM zone varies from 18 to 42, and the εNd varies from -6.1 to -17, both of them show the characters of isotopic disequilibrium. The oxygen isotope studies indicate that the protoliths of these UHPM rocks have experienced oxygen isotope exchange with meteoric water (or sea water) before metamorphism and no significant changes in the processes of metamorphism on their oxygen isotope composition have been recorded in these rocks. Except for one sample from Bixiling, all samples of eclogite from Dabie UHPM zone show the 3He/4He ratios from 0.79×10-7 to 9.35×10-7, indicating the important contribution of He from continental crust. All Sr, Nd, O and He isotopic studies indicate that the UHPM rocks retain the isotopic characteristics of their protoliths of crust origin. No significant influence of mantle materials has been found in these metamorphic rocks. Trying to explain above isotopic characteristics, some researchers assume that the speeds of dipping thrust and uplifting of rocks were both very high. In this condition, there will not be enough time for isotopic exchange between crust protolith and mantle materials. Therefore, we can not see the tracer of mantle materials in these UHPM rocks. However, this assumption can not be justified with available knowledge. Firstly, it was estimated that the whole process of UHPM took at least 15 Ma. During such a long period, and at the metamorphic temperature of ≥700 ℃, the protolith of crust origin can not escape from isotopic exchange with mantle materials if the UHPM have happened in the mantle depth of ≥100 km. In contrast, all problems will be dismissed if we assume that the UHPM have happened at the depth still in crust.  相似文献   

12.
西藏羊八井地热水的氢、氧稳定同位素组成及氚含量   总被引:4,自引:0,他引:4  
Isotopic data on drill hole water and surface water samples from the Yengbajain geothermal area as well as an ice sample from the glacial amphitheater in the Mt. Nyainqintanglha to the northwest of the Yangbajain basin are presented in this paper. In consideration of isotopic fractionation during steam separation, the hydrogen and oxygen isotopic ratios for thermal waters collected at the mouths of drill holes have been calibrated. The D/H ratio of thermal waters is similar to that of local precipitation, indicating their meteoric origin. The δ D and δ^18O values of the thermal waters of --150--160 and -17-20‰, respectively are the lowest among those well-known geothermal fields in the world.The recharge area of the geothermal system is at elevation of about 4,800--5,000 m. Drill holes along the axis of a tongueshaped zone where loose Quaternary sediments have been cemented by siliceous material show greater δ D and δ^18O values and discharge tritiumfree thermal waters. It is suggested that the thermal waters may be derived from superhcated water and steam which find their way upwards along the tectonic fractures within the granitic base overlain by Quaternary sediments. The classification of drill hole geothermal waters have been made in accordance with their δ D and δ^18O values and chloride contents. The “oxygen shift” of the thermal waters seems to be 2‰, due to isotopic exchange reactions between geothermal waters and reservoir rocks  相似文献   

13.
西藏南部花岗岩类的岩石化学研究   总被引:2,自引:0,他引:2  
Based on 200 analytical data on granitoid rocks in this region, the average chemical composition has been calculated by the area weight method for various granitoid rocks of different episodes and different stages, as well as for different petrographical belts and the whole region. The origins of various types of granitoid rocks are discuesed, too.  相似文献   

14.
The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.  相似文献   

15.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

16.
Nd, Sr and O isotopic study on the spilite-keratophyre sequence in Xiqiu shows that its ∈_(Nd) values are inthe range of 4.02-5.26, and its ∈_(Sr) values, +1.4-2.6. According to the points of these data in the ∈_(Nd)-T,∈_(Sr)-T and ∈_(Nd)-∈_(Sr) diagrams, the spilite-keratophyre is interpreted as being slightly contaminated by crustalmaterials. Its δ~(18)O values are 3.9-5.0‰. The depletion of ~(18)O in the rocks resulted from the influence ofseawater hydrothermal alteration during or soon after the rock formation. Based on the isotopic characteristicsand available geochemical data, it is believed that the spilite-keratophyre was formed in the well-developedisland-arc environment during the Late Proterozoic subduction of the palaeo-Pacific plate beneath thesoutheastern margin of the Yangtze massif.  相似文献   

17.
Sinian strata (isotopic ages ranging from 1900-850 m.y.) in Oihsien, county and its vicinity have been studied in more detail from the standpoint of sedimentary geochemistry. Average chemical composition of various sedimentary rocks in the Sinian sequence (sandstone, siltstone, shale, dolomite and limestone) have been calculated.The periodicity and general trend as exhibited in the course of evolution of element association have been demonstrated by mathematical statistics based on numerious chemical analyses and semiquantitative spectroscopic data with the aid of electronic computer. In accordance with the above results the classification of elements are proposed on a more reasonable ground. Considerable attention has been paid to the periodicity and evolutionary eharacterictics of rocks, minerals and elements. The mode of occurrence of elements is examined in the light of trace-element concentrations and the relative coefficients between them in different components (clastic debris, clay, and ete.) from a variety of rocks and carbonates. Finally, the relationship between background abundances of elements and mineralization, and the effect of submarine eruption on sedimentation and the enrichment of some elements, for example, K, St, Mn, B, P, Pb and Zn, have also been dealt with.  相似文献   

18.
Since libration large-scale geological surveys have been made, revealing that the socalled “Tianshan granites” are a complex po]ycycle system of magmatic rocks. It consists mainly of the products of magmatic activities which took place in the differentstages of the Sangyang-Laliang cycle, the Caledonian cycle, the Hercynian cycle, the Indosinian-Yanshan cycle and the Himalaya cycle. The substantial part is composed of granodiorites and biotite granites in the Hercynian cycle. This paper provides a comprehensive discussion for the first time on the granitoid rocks of the Tianshan system in China. The architectonic element of this area consists of the entire Tianshan fold system within the territory of China, and parts of the Kalpin fault block and the Kuluktag fault block which are located in tbe border area in the north of the Tarim Basin. Morever, the petrology and geochemistry of granitoid rocks of different ages in this region are discussed as well. In conjunction with the development of the Tianshan gcosyncline, discussions also are made on the cvolution and the history of tectonic displacement of those granitoid rocks. The comparison between the granitoid rocks of different ages in respect to .their distribution patterns,petrological features, geochemistry, accessory minerals and minerogenetic specificity strongly shows that the evolution of Tianshan granitoid rocks is characterized as being from basic through acid to alkaline.  相似文献   

19.
Granitic rocks are widespread n Jiangxi, constituting an important part of Nanling granites. It is snggested that they are genetieally related to ore genesis, A great deal of work had been dons by many geologists before and after liberation,but the problem concerning their age division still open to eontrovasy, The authors propose in this paper an age-division ssbeme for Jiangxi granitic rocks in an attempt to shed much light on the following problems,1, The age-divlsion of pro-Caledonian granites; 2: The existence of Varisian granites and their position in the age-division;3, The upper and lower limits of Indosinian Cyele and the distribution patterns of granites belonging to the cycle; and 4. The sub-division of Yenshanian granites.  相似文献   

20.
The Xihuashan granite is typically representative of the tungsten-bearing granites widespread in theNanling area of South China. It was considered in the past to have been formed by partial melting of the upper continental crust, with its source rocks most probably of the Sinian or Cambrian. However, detailed REE analyses, studies of the Rb-Sr isotopic system and melting experiments of metasedimentary rocks all argue against this idea. Moreover, stable isotopic data also indicate a deep source origin for S, C, H and O. The authors thus propose a genetic concept of the lower continental crustal source of the Xihuashan granite, and point out further that tungsten deposits related to this kind of granite are linked in some way to deep-seated structure and concentrated along NNE-NE- and ENE-striking major deep fault belts above the transitional zone between mantle uplift and mantle depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号