首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The recent sedimentation processes in four contrasting lacustrine and marine basins of Northern Patagonia are documented by high-resolution seismic reflection profiling and short cores at selected sites in deep lacustrine basins. The regional correlation of the cores is provided by the combination of 137Cs dating in lakes Puyehue (Chile) and Frías (Argentina), and by the identification of Cordon Caulle 1921–22 and 1960 tephras in lakes Puyehue and Nahuel Huapi (Argentina) and in their catchment areas. This event stratigraphy allows correlation of the formation of striking sedimentary events in these basins with the consequences of the May–June 1960 earthquakes and the induced Cordon Caulle eruption along the Liquiñe-Ofqui Fault Zone (LOFZ) in the Andes. While this catastrophe induced a major hyperpycnal flood deposit of ca. 3×106 m3 in the proximal basin of Lago Puyehue, it only triggered an unusual organic rich layer in the proximal basin of Lago Frías, as well as destructive waves and a large sub-aqueous slide in the distal basin of Lago Nahuel Huapi. A very recent mega-turbidite in the two distal basins of Reloncavi fjord located close to the LOFZ suggests that 1960 co-seismic movements in this area may have triggered the remobilization of ca. 187×106 m3 of marine sediments.  相似文献   

2.
Lago Puyehue is a glacigenic lake in the Chilean Lake District (40°S) with a complex deglaciation history. A detailed seismic–stratigraphic study of its sedimentary infill indicates a much earlier retreat of the glacier from the Lago Puyehue basin than the neighbouring glacier from the Lago Rupanco basin. Because of their close proximity, Rupanco meltwater streams played an important part in the depositional processes of Lago Puyehue. A timing discrepancy between the in‐lake ages of a sediment core and the outer‐lake ages of moraine deposits (re)opens the discussion on the timing of deglaciation in the Southern Hemisphere. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we compare the elemental and isotopic (C, N, Pb) geochemistry of lake sediments from two contrasted environments in south‐central Chile. The first lake, Laguna Chica de San Pedro (LCSP), is situated in the urbanised area of the Biobio Region (36°S). The second lake, Lago Puyehue (40° S), is located 400 km to the southeast of LCSP and within an Andean national park. Our aim is to identify environmental impacts associated with increasing industrial activities and land degradation during the last 150 a. In LCSP, shifts in C/N atomic ratios, δ13C and δ15N from 1915–1937 to the late 1980s are attributed to successive land degradation episodes in the lake watershed. Based on a Pb isotopic mixing model, we estimate that up to 20% of lead in LCSP sediments is supplied from urban atmospheric pollution. By contrast, human impact in the watershed of Lago Puyehue is very limited. We observe no change in organic geochemistry during the last 150 a and lead contamination remains lower than 5%, even during the last decades. Although contamination levels are much higher in LCSP than in Lago Puyehue, a peak in anthropogenic Pb is recorded during the same period (1974–1976) at both sites. This maximum contamination level is consistent with increased industrial activity in the vicinity of Concepción. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Ma, L., Wu, J., Yu, H., Zeng, H. & Abuduwaili, J. 2011: The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, northwest China. Boreas, Vol. 40, pp. 518–524. 10.1111/j.1502‐3885.2010.00200.x. ISSN 0300‐9483. Lake Ebinur, Xinjiang, northwest China, is a closed‐basin, shallow lake that responds rapidly to changes in the ratio of precipitation to evaporation (P/E). A sediment record spanning the last 1500 years was obtained from the lake. We used δ18O and δ13C in bulk carbonate, and δ13C of organic matter in the lake sediments to infer environmental changes in the Ebinur region during the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Decreased δ18O values of carbonate largely reflect an enhanced P/E ratio within the basin and a higher lake level. Bulk carbonates with higher δ13C values are deposited during periods when lake‐water pH is high, while lower δ13C values reflect a lower pH in the water column. δ13C in organic matter is associated with the amount of precipitation. The results indicate that the Ebinur region experienced a dry MWP and a wet LIA, although the MWP and LIA were warm and cold periods, respectively, as expected. Furthermore, the MWP and LIA were hydrologically complex and cannot be characterized as uniformly wet or dry. Peak wet periods are recorded in the sediment core around AD 1000, 1400 and 1700, and a dry event also occurred in the period of temperature change within the LIA (cold to warm around AD 1500). A comparison of the Lake Ebinur data with proxy records for the strength of the Siberian High and climate proxy indicators suggests that precipitation in the Ebinur region was a consequence, in part, of an enhanced Siberian High during the LIA.  相似文献   

5.
The Upper Gypsum unit of the Caltanissetta Basin (Sicily) records the last phase of the Messinian salinity crisis comprising the so‐called ‘Lago Mare’ event. A new facies analysis study recognizes nine to ten depositional cycles consisting of seven rhythmically interbedded primary gypsum bodies, and two to three sandstone bodies separated by marly terrigenous horizons showing laterally persistent vertical organization. A basal thin gypsum bed is overlain by a cluster of five thicker gypsum bodies. A marly interval containing two distinct sandstone horizons separates this cluster from the overlying uppermost (seventh) gypsum body. The terrigenous Arenazzolo Formation, in turn followed by the lower Pliocene Trubi Formation, is considered here to form the uppermost part of the Upper Gypsum unit. The rhythmic alternation in the sandy marls and gypsum/sandstone bodies records the response of sediments from shelfal to deltaic systems to precession‐driven arid‐wet climate fluctuations causing cyclical changes of both base‐level and water concentration. During wet climate phases (at insolation maxima) marl and sandstone were deposited in a hypohaline environment as suggested by: (i) the typical Lago Mare faunal assemblage and (ii) the negative δ18O values. During arid phases (at insolation minima) the reduced meteoric supply, recorded by higher δ18O values in the carbonate, caused the development of a negative hydrological budget leading to evaporite precipitation. At a basinal scale the Upper Gypsum unit unconformably overlies a mainly clastic evaporite unit containing carbonate breccia (the so‐called ‘Calcare di Base’) and/or clastic gypsum. Towards the basin centres, where the basal contact becomes conformable, a primary gypsum cumulate horizon is present. This layer is interpreted as a possible lateral equivalent of the Halite unit present only in the deepest depocentres. Based on astronomical calibration of the depositional cycles, the Upper Gypsum unit, including the Arenazzolo Formation, spans the interval between 5·33 and 5·53 Ma. This new age calibration allows the deposition of the Halite unit to be dated between 5·6 Ma (top of the Lower Evaporites) and 5·55 Ma (base of the Upper Evaporites) corresponding to isotopic stages TG12 and/or TG14.  相似文献   

6.
Detailed isotopic study (δ13C, δ18O) of Lower Proterozoic sedimentary carbonates from biostratigraphically dated successions in Karelia (Russia) revealed a large positive δ13C anomaly (average δ13C-value constitutes approximately +10‰ PDB) at 2.3 Byr ago and a huge drop of δ13C-values in the subsequent ‘black shale period’(2.2 Byr ago). These data are interpreted to be a result of large-scale changes in the oxygen content of the atmosphere. According to this model the positive carbon isotopic anomaly of sedimentary carbonates at about 2.3 Byr ago reflects a very high O2-content of the atmosphere at this time; the subsequent drop in δ13C-values equates with a sharp decrease of the O2-content of the atmosphere.  相似文献   

7.
The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity.Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes.  相似文献   

8.
High-resolution δ18O and δ13C records obtained from seven cores were drilled from ledges of the reef builder gastropod Dendropomapetreaum and used to reconstruct variations in the Levantine basin sea surface temperature, hydrology and productivity during the past 500 years. The δ18O of the aragonite shell of living D. petreaum indicate that skeletal deposition occurs under isotopic equilibrium and faithfully record the temperature and surface water δ18O during summer and autumn. The mean down core δ18O record clearly captures global and local climatic events, such as the Little Ice Age (LIA) and the recent warming of surface waters in the Eastern Mediterranean. Comparison to the Western Mediterranean vermetid δ18O record reveals changes in the freshwater/evaporation budgets of the two basins during cold and warm periods. The Eastern basin had lower surface temperatures and excess evaporation during the LIA and experienced a relatively larger warming and/or a decrease in freshwater/evaporation during the past 70 years. The D. petraeum δ13C is strongly related to δ13C of dissolved inorganic carbon and to the primary productivity of the surface water. The mean down core δ13C record exhibits enrichment during the LIA maximum and a strong depletion trend during the last century. The LIA δ13C enrichment is attributed to an increase in primary production and high nutrient levels which resulted from increased vertical mixing and upwelling. The last century δ13C depletion is mostly related to the increased anthropogenic emissions of 13C depleted carbon dioxide and to a certain decrease in primary production. The data indicate that D. petraeum isotopic signatures are unique proxies for last 500 years high-resolution reconstruction of paleo-oceanographic environments in the Mediterranean and potentially in the sub-tropical Atlantic regions.  相似文献   

9.
Core A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula.  相似文献   

10.
The carbon isotope composition (δ13C values) of long chain n-alkanes in lake sediments has been considered a reliable means of tracking changes in the terrigenous contribution of plants with C3 and C4 photosynthetic pathways. A key premise is that long chain leaf wax components used for isotope analysis are derived primarily from terrigenous higher plants. The role of aquatic plants in affecting δ13C values of long chain n-alkanes in lacustrine sediments may, however, have long been underestimated. In this study, we found that a large portion of long chain n-alkanes (C27 and C29) in nearshore sediments of the Lake Qinghai catchment was contributed by submerged aquatic plants, which displayed a relatively positive carbon isotope composition (e.g. −26.7‰ to −15.7‰ for C29) similar to that of terrestrial C4 plants. Thus, the use of δ13C values of sedimentary C27 and C29 n-alkanes for tracing terrigenous vegetation composition may create a bias toward significant overestimation/underestimation of the proportion of terrestrial C4 plants. For sedimentary C31, however, the contribution from submerged plants was minor, so that the δ13C values for C31 n-alkane in surface sediments were in accord with those of the modern terrestrial vegetation in the Lake Qinghai region. Moreover, we found that changes in the δ13C values of sedimentary C27 and C29 n-alkanes were closely related to water depth variation. Downcore analysis further demonstrated the significant influence of endogenous lipids in lake sediments for the interpretation of terrestrial C4 vegetation and associated environment/climate reconstruction. In conclusion, our results suggest that the δ13C values of sedimentary long chain n-alkanes (C27, C29 and C31) may carry different environmental signals. While the δ13C values of C31 were a reliable proxy for C4/C3 terrestrial vegetation composition, the δ13C values of C27 and C29 n-alkanes may have recorded lake ecological conditions and sources of organic carbon, which might be affected by lake water depth.  相似文献   

11.
A high-resolution multi-proxy study including the elemental and isotopic composition of bulk organic matter, land plant-derived biomarkers, and alkenone-based sea-surface temperature (SST) from a marine sedimentary record obtained from the Jacaf Fjord in northern Chilean Patagonia (44°20′S) provided a detailed reconstruction of continental runoff, precipitation, and summer SST spanning the last 1750 yr. We observed two different regimes of climate variability in our record: a relatively dry/warm period before 900 cal yr BP (lower runoff and average SST 1°C warmer than present day) and a wet/cold period after 750 cal yr BP (higher runoff and average SST 1°C colder than present day). Relatively colder SSTs were found during 750–600 and 450–250 cal yr BP, where the latter period roughly corresponds to the interval defined for the Little Ice Age (LIA). Similar climatic swings have been observed previously in continental and marine archives of the last two millennia from central and southern Chile, suggesting a strong latitudinal sensitivity to changes in the Southern Westerly Winds, the main source of precipitation in southern Chile, and validating the regional nature of the LIA. Our results reveal the importance of the Chilean fjord system for recording climate changes of regional and global significance.  相似文献   

12.
This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxy  相似文献   

13.
Late Pleistocene carbon isotope (δ13C) records from a paleolithic sedimentary sequence collected from Baeki, Hongcheon, central Korea, show long-term changes with superimposed short-term isotopic excursions. The δ13C value of the sedimentary organic matter, a proxy for past vegetation change, varied from ? 26‰ to ? 23‰ for the period between 30 and 90 ka, with a long-term variation similar to insolation changes. High-amplitude (? 1‰ to approximately ? 1.5‰) fluctuations superimposed on the long-term changes in the δ13C values decreased during stronger summer monsoon intervals but increased during the weakened summer monsoon. This millennial-scale pattern is generally similar to Greenland Dansgaard–Oeschger (D–O) cycles. The possible connection between the Hongcheon area, Korea and high latitudes may be explained by atmospheric circulation changing in response to the D–O oscillations in the Northern Hemisphere.  相似文献   

14.
A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ~AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ~AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ~250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.  相似文献   

15.
Organic carbon (OC) and total nitrogen (TN) concentrations and stable isotope ratios (δ13C, δ15N) of fine (<50 μm) size fractions of deep-sea sediments from the central North Atlantic were employed to identify changes in sources of organic matter over the past 50 ka BP. Ambient glacial sediments are characterised by values that reflect mixtures of marine and terrestrial inputs (averages ± 1σ: OC/TN = 7.6 ± 0.8; δ13C = −22.8 ± 1.0‰; δ15N = 5.5 ± 0.6‰). δ13C, OC, and TN concentrations shift to higher values during the Holocene, indicating a gradual decrease of fine terrigenous supply to the North Atlantic. The unchanged δ15N record between last glacial and Holocene stages indicates that the central North Atlantic region remained oligotrophic at least during the past 50 ka BP, but additional studies are required to support this result in terms of nitrogen oceanic budget. During the phases of enhanced ice-rafted detrital supply corresponding to prominent Heinrich events (HL1, HL2, HL4, and HL5), fine-sized sedimentary organic matter has lower OC and TN concentrations, contrasting sharply with those of ambient glacial sediments. Lower δ13C (down to −28‰) and δ15N (down to 1.6‰) values and high OC:TN ratios (up to 14.7 ± 1.1) are found for HL1, HL2, and with lesser extent for HL4. These values reflect enhanced detrital supply originating from poorly differentiated soil horizons that characterise periglacial climate conditions and from organic matter-bearing rock sources of the underlying geological basement. During HL5, only the δ13C offset records the input of fine size ice-rafted organic matter. Gradually changing soil development conditions during the time interval covering HL5 to HL1 (marine isotope stages 5 to 2), as well as varying erosion levels, have been hypothesized on the basis of constant δ13C, increasing OC/TN and decreasing δ15N values.  相似文献   

16.
Permian marine sedimentary rocks that crop out in northern Chile are closely related to the development of a Late Paleozoic magmatic arc. A study of Upper Paleozoic units east of Iquique (20°S) identified three members within the Juan de Morales Formation, each of which were deposited in a different sedimentary environment. A coarse-grained terrigenous basal member represents alluvial sedimentation from a local volcanic source. A mixed carbonate-terrigenous middle member represents coastal and proximal shallow marine sedimentation during a relative sea-level rise related with a global transgression. Preliminary foraminifer biostratigraphy of this middle member identified a late Early Permian (late Artinskian–Kungurian) highly impoverished nodosarid–geinitzinid assemblage lacking fusulines and algae, which is characteristic of temperate cold waters and/or disphotic zone. The upper fine-grained terrigenous member represents shallow marine siliciclastic sedimentation under storm influence. The Juan de Morales Formation consists of continental, coastal and shallow marine sediments deposited at the active western margin of Gondwana at mid to low latitudes. A revised late Early Permian age and similar paleogeography and sedimentary environments are also proposed for the Huentelauquén Formation and related units of northern and central Chile, Arizaro Formation of northwestern Argentina, and equivalent units of southernmost Peru.  相似文献   

17.
To investigate potential variability in the biosynthetic fractionation of hydrogen isotopes between environmental water and plant lipids, the cord grass Spartina alterniflora was sampled from a single location in a coastal marsh over a period of 16 months. Values of δD for a variety of lipids were measured by gas chromatography/pyrolysis/isotope ratio mass spectrometry. S. alterniflora grows partially submerged in seawater, so it has a virtually unlimited supply of water with nearly unvarying isotopic composition. Temporal changes in the δD values of lipids can thus be interpreted as representing mainly variations in biosynthetic fractionation. Fatty acids, n-alkanes, and phytol extracted from S. alterniflora have nearly constant δD values from ∼October through May, but exhibit marked decreases of up to 40‰ during summer months. These shifts in lipid δD values are interpreted as representing a change in the source of organic substrates, principally acetate, used for their biosynthesis. Lower summertime δD values for lipids are consistent with an increasing reliance on current photosynthate as feedstock for biosynthesis, whereas stored carbohydrate reserves are utilized more extensively during other times of the year. Regardless of the specific mechanism, the data emphasize that overall fractionations between water and plant lipids depend on biological as well as environmental variables, and that the biosynthetic fractionation is not necessarily constant even for a single plant. Because lipids such as fatty acids are present in all cells and turn over on timescales of weeks to months, measurements of δD values in fatty acids may also provide useful constraints for distinguishing biologic versus environmental controls on cellulose δD values in trees.  相似文献   

18.
Abstract Core BAP96‐CP, sampled from the deepest part of the Bay of La Paz, Gulf of California, has been analysed sedimentologically taking into account regional climate and oceanography. Laminated sediments at the bottom of the bay are essentially not bioturbated by benthic fauna. A subanoxic condition (O2 < 0·2 mL L?1) inhibits the proliferation of benthic fauna. Within the bay, the relative abundances of terrigenous and biogenic inputs change periodically. The terrigenous input is greater than the biogenic input and apparently experiences larger fluctuations. The terrigenous input dominates in dark laminae, whereas the biogenic input mostly occurs in light laminae. Thus, it is assumed that, down the core, the alternation of dark and light laminae represents cycles in the extent of dilution of the biogenic input by terrigenous input. The terrigenous input into the Bay of La Paz is mostly regulated by pluvial runoff. Thus, its temporal fluctuation follows the periods shown by the regional pluvial regime, particularly the 11·2 year period. This is equal to the frequency of sunspot cycles.  相似文献   

19.
High‐resolution palaeorecords of climate are critical to improving current understanding of climate variability, its sensitivity and impact on the environment in the past and in the future. Sediments from the Cariaco Basin off the coast of Venezuela have proven to be sensitive recorders of tropical palaeoclimate variability down to an annual scale. However, the fingerprint of climate and sea level in the sediments of the last glacial period is still not completely understood. In this study, lamination analysis of sediments from the Cariaco Basin is extended to the last glacial period. Detailed sedimentological and geochemical analysis (laser ablation–inductively coupled plasma–mass spectrometry) reveals couplets of light‐coloured, terrigenous‐rich and dark‐coloured, biogenic opal‐rich laminae, which are interpreted to reflect the seasonal migration of the Intertropical Convergence Zone. In addition, a previously undescribed, nearly pure terrigenous lamina type is observed, which is referred to hereafter as a ‘C‐layer’. The C‐layers in the sedimentary sequence are interpreted as flood layers that originate from local rivers. The occurrence of these C‐layers is investigated for two core locations in the Cariaco Basin over the last 110 kyr by continuous X‐ray fluorescence scanning. Dansgaard–Oeschger oscillations are most clearly traced by proxies reflecting productivity and marine organic matter content of the sediment. In contrast, the abundance of terrigenous material differs at times between the two sites. On an interglacial to glacial timescale, the ability to record events causing C‐layers is likely to be influenced by changes in sea level and source proximity. On a millennial scale, both sediment cores contain more C‐layers during warmer interstadials compared with colder stadials during Marine Isotope Stage 3. This finding implies that interstadials were not only wetter than stadials, but probably also characterized by increased rainfall variability, leading to an enhanced frequency of flooding events in the hinterland of the Cariaco Basin.  相似文献   

20.
Photosynthetic pigments and other indicators of phytoplankton were analyzed in a dated undisturbed sediment core obtained from the southern basin of Lake Baikal to reveal temporal changes in the phytoplankton community in the lake through the last glacial/post-glacial transition. The sedimentation age of the core spans the last 24 14C ka. Chlorophyll a, its derivatives, carotenoids and total organic carbon (TOC) started to increase after 15 14C ka, and the onset of biogenic silica occurred at 10 14C ka. This indicated that the post-glacial growth of diatoms was preceded by that of other phytoplankton groups. In the record of the pigments and TOC, a temporary decrease was observed in the period 11.5–10.5 14C ka, corresponding to the Younger Dryas cold period. The similarity found between the depth profiles of pyropheophytin a and steryl chlorin esters formed through predation of phytoplankton by zooplankton and that of TOC suggested the important contribution of fecal pellets to sedimentary organic matter in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号