首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of polynomial‐fraction approximation is explored in this article to develop a nested type of systematic lumped‐parameter model for unbounded soil. Based on the optimal coefficients determined from the flexibility formulation, the reciprocal of the polynomial‐fraction is first taken to represent the dynamic stiffness function of foundation and then decomposed into a linear polynomial and another polynomial‐fraction. The nested division introduced in this study is operated to generate a nested form for this decomposed polynomial‐fraction, which directly corresponds to a nested discrete‐element model. The nested type of lumped‐parameter model is then easily constructed by connecting this nested discrete‐element model in series with another simple discrete‐element model corresponding to the linear polynomial. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   

4.
The paper presents a lumped parameter model for the approximation of the frequency‐dependent dynamic stiffness of pile group foundations. The model can be implemented in commercial software to perform linear or nonlinear dynamic analyses of structures founded on piles taking into account the frequency‐dependent coupled roto‐translational, vertical, and torsional behaviour of the soil‐foundation system. Closed‐form formulas for estimating parameters of the model are proposed with reference to pile groups embedded in homogeneous soil deposits. These are calibrated with a nonlinear least square procedure, based on data provided by an extensive non‐dimensional parametric analysis performed with a model previously developed by the authors. Pile groups with square layout and different number of piles embedded in soft and stiff soils are considered. Formulas are overall well capable to reproduce parameters of the proposed lumped system that can be straightforwardly incorporated into inertial structural analyses to account for the dynamic behaviour of the soil‐foundation system. Some applications on typical bridge piers are finally presented to show examples of practical use of the proposed model. Results demonstrate the capability of the proposed lumped system as well as the formulas efficiency in approximating impedances of pile groups and the relevant effect on the response of the superstructure.  相似文献   

5.
动力基础系统非线性本构关系的研究   总被引:1,自引:1,他引:0  
采用理想集总参数计算体系,以三次幂多项式模型反映动力地基的非线性特性,将非线性幂函数作为循环荷载作用下系统位移-力关系的主干骨线,在此基础上按照Masing二倍法则,将骨线拓展为位移一力的滞回曲线,建立了动力基础双曲线滞回动力学模型。提出了非线性广义刚度函数的概念,建立了动力基础系统在不同振动形式下的非线性本构关系。  相似文献   

6.
Lumped parameter models with a so called “gyro‐mass” element (GLPMs) have been proposed recently in response to a strong demand for efficiently and accurately representing frequency‐dependent impedance functions of soil–foundation systems. Although GLPMs are considered to be powerful tools for practical applications in earthquake engineering, some problems remain. For instance, although GLPMs show fairly close agreement with the target impedance functions, the accuracy of the transfer functions and the time‐histories of dynamic responses in structural systems comprising GLPMs have never been verified. Furthermore, no assessment has been performed on how much difference appears in the accuracy of dynamic responses obtained from GLPMs and those from conventional Kelvin–Voigt models comprising a spring and a dashpot arranged in parallel with various frequency‐independent constants. Therefore, in this paper, these problems are examined using an example of 2×4 pile groups embedded in a layered soil medium, supporting a single‐degree‐of‐freedom system subjected to ground motions. The results suggest that GLPMs are a new option for highly accurate computations in evaluating the dynamic response of structural systems comprising typical pile groups, rather than conventional Kelvin–Voigt models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A number of methods have been proposed that utilize the time‐domain transformations of frequency‐dependent dynamic impedance functions to perform a time‐history analysis. Though these methods have been available in literature for a number of years, the methods exhibit stability issues depending on how the model parameters are calibrated. In this study, a novel method is proposed with which the stability of a numerical integration scheme combined with time‐domain representation of a frequency‐dependent dynamic impedance function can be evaluated. The method is verified with three independent recursive parameter models. The proposed method is expected to be a useful tool in evaluating the potential stability issue of a time‐domain analysis before running a full‐fledged nonlinear time‐domain analysis of a soil–structure system in which the dynamic impedance of a soil–foundation system is represented with a recursive parameter model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Empirically based understanding of streamflow generation dynamics in a montane headwater catchment formed the basis for the development of simple, low‐parameterized, rainfall–runoff models. This study was based in the Girnock catchment in the Cairngorm Mountains of Scotland, where runoff generation is dominated by overland flow from peaty soils in valley bottom areas that are characterized by dynamic expansion and contraction of saturation zones. A stepwise procedure was used to select the level of model complexity that could be supported by field data. This facilitated the assessment of the way the dynamic process representation improved model performance. Model performance was evaluated using a multi‐criteria calibration procedure which applied a time series of hydrochemical tracers as an additional objective function. Flow simulations comparing a static against the dynamic saturation area model (SAM) substantially improved several evaluation criteria. Multi‐criteria evaluation using ensembles of performance measures provided a much more comprehensive assessment of the model performance than single efficiency statistics, which alone, could be misleading. Simulation of conservative source area tracers (Gran alkalinity) as part of the calibration procedure showed that a simple two‐storage model is the minimum complexity needed to capture the dominant processes governing catchment response. Additionally, calibration was improved by the integration of tracers into the flow model, which constrained model uncertainty and improved the hydrodynamics of simulations in a way that plausibly captured the contribution of different source areas to streamflow. This approach contributes to the quest for low‐parameter models that can achieve process‐based simulation of hydrological response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Formulation of a matrix‐valued force–displacement relationship which can take radiation damping into account is of major importance when modelling unbounded domains. This can be done by means of fundamental solutions in space and time in connection with convolution integrals or by means of a frequency dependent boundary element representation, but for discrete frequencies Ω only. In this paper a method for interpolating discrete values of dynamic stiffness matrices by a continuous matrix valued rational function is proposed. The coupling between interface degrees of freedom is fully preserved. Another crucial point in soil–structure interaction analysis is how to implement an approximation in the spectral domain into a time‐domain analysis. Well‐known approaches for the scalar case are based on the partial‐fraction expansion of a scalar rational function. Here, a more general procedure, applicable to MDOF‐systems, for the transformation of spectral rational approximations into the time‐domain is introduced. Evaluation of the partial‐fraction expansion is avoided by using the so‐called mixed variables. Thus, unknowns in the time‐domain are displacements as well as forces. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The concept of distributed strain‐sensing techniques has been proposed in our recent research, which was dedicated to utilizing the strain distributions throughout the full or partial areas of structures to detect arbitrary and unforeseen damage. An algorithm not requiring a detailed analytical model is presented for damage locating in flexural structures through the direct use of dynamic responses recorded by distributed long‐gauge strain sensors. The modal macro‐strain vector (MMSV), which has been proven to have a mapping relation with displacement mode shape, can be extracted directly from macro‐strain time‐series data, from which a damage evaluating index can be derived and used as an indicator for locating damage. Numerical examples are simulated to verify the sensitivity and effectiveness of the index in different cases. Furthermore, experimental investigations on a cantilevered beam with various long‐gauge fibre optic sensors placements are carried out to examine the feasibility and applicability of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The scaled boundary finite‐element method is extended to simulate time‐harmonic responses of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. The unbounded domains and the elasticity matrices are transformed to the scaled boundary coordinates. The scaled boundary finite‐element equation in displacement amplitudes are derived directly from the governing equations of elastodynamics. To enforce the radiation condition at infinity, an asymptotic expansion of the dynamic‐stiffness matrix for high frequency is developed. The dynamic‐stiffness matrix at lower frequency is obtained by numerical integration of ordinary differential equations. Only the boundary is discretized yielding a reduction of the spatial dimension by one. No fundamental solution is required. Material anisotropy is modelled without additional efforts. Examples of two‐ and three‐dimensional non‐homogeneous isotropic and transversely isotropic unbounded domains are presented. The results demonstrate the accuracy and simplicity of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Bridge performance under earthquake loading can be significantly influenced by the interaction between the structure and the supporting soil. Even though the frequency dependence of the interaction mentioned in this study has long been documented, the simplifying assumption that the dynamic stiffness is dominated by the mean or predominant excitation frequency is still commonly made, primarily as a result of the associated numerical difficulties when the analysis has to be performed in the time domain. This study makes use of the advanced lumped parameter models recently developed 1 in order to quantify the impact of the assumption on the predicted fragility of bridges mentioned in this study. This is achieved by comparing the predicted vulnerability for the case of a reference, well studied, actual bridge using both conventional, frequency‐independent, Kelvin–Voigt models and the aforementioned lumped parameter formulation. Analysis results demonstrate that the more refined consideration of frequency dependence of soil–structure interaction at the piers and the abutments of a bridge not only leads to different probabilities of failure for given intensity measures but also leads to different hierarchy and distribution of damage within the structure for the same set of earthquake ground motions even if the overall probability of exceeding a given damage state is the same. The paper concludes with the comparative assessment of the effect for different soil conditions, foundation configurations, and ground motion characteristics mentioned in this study along with the relevant analysis and design recommendations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an experimental implementation and verification of multi‐degrees‐of‐freedom effective force testing (MDOF‐EFT). An experimental setup that consists of a two‐degrees‐of‐freedom structural system and two hydraulic actuators at the Johns Hopkins University was utilized in this study. First, experimental system identification was performed to develop compatible analytical models for the multi‐input and multi‐output systems. Dynamics of the control plant, that is, the valve‐to‐force relations, were modeled with a rational polynomial transfer function matrix and delay components. By using the analytical model, a centralized decoupling loop‐shaping force feedback controller was designed such that the forces are uncoupled and the loop transfer functions have desirable dynamic characteristics in the frequency domain. Then, a series of harmonic force and earthquake simulation tests were performed to assess capabilities and limitations of MDOF‐EFT. Experimental results showed that the dynamic forces in the two actuators were accurately controlled to provide tracking while the system was stable and robust for the entire period of the experiment. Furthermore, earthquake simulation tests with increased levels of the reference forces demonstrated the feasibility of MDOF‐EFT with highly nonlinear test structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Neighboring springs draining fractured‐rock aquifers can display large differences in water quality and flow regime, depending on local variations of the connectivity and the aperture size distribution of the fracture network. Consequently, because homogeneous equivalent parameters cannot be assumed a priori for the entire regional aquifer, the vulnerability to pollution of such springs has to be studied on a case by case basis. In this paper, a simple lumped‐parameter model usually applied to estimate the mean transit time of water (or tracer) is presented. The original exponential piston‐flow model was modified to take land‐use distribution into account and applied to predict the evolution of atrazine concentration in a series of springs draining a fractured sandstone aquifer in Luxembourg, where despite a nationwide ban in 2005, atrazine concentrations still had not begun to decrease in 2009. This persistence could be explained by exponentially distributed residence times in the aquifer, demonstrating that in some real world cases, models based on the groundwater residence time distribution can be a powerful tool for trend reversal assessments as recommended for instance by current European Union guidelines.  相似文献   

15.
The effectiveness of equivalent force control (EFC) method has been experimentally validated through hybrid tests with simple specimens. In this paper, the EFC method is applied for the MDOF pseudo‐dynamic substructure tests in which a three‐storey frame‐supported reinforced concrete masonry shear wall with full scale is chosen as physical substructure. The effects of equivalent force controller parameters on the response performance are studied. Analytical expressions for the controller parameter ranges are derived to avoid response overshooting or oscillation and are verified by numerical simulation. The controller parameters are determined based on analytical and numerical studies and used in the actual full‐scale pseudo‐dynamic test. The test results show good tracking performance of EFC, which indicates a successful test. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The current generation of hydrological models has been widely criticized for their inability to adequately simulate hydrological processes. In this study, we evaluate competing model representations of hydrological processes with respect to their capability to simulate observed processes in the Mahurangi River basin in Northland, New Zealand. In the first part of this two‐part series, the precipitation, soil moisture, and flow data in the Mahurangi were used to estimate the dominant hydrological processes and explore several options for their suitable mathematical representation. In this paper, diagnostic tests are applied to gain several insights for model selection. The analysis highlights dominant hydrological processes (e.g. the importance of vertical drainage and baseflow compared to sub‐surface stormflow), provides guidance for the choice of modelling approaches (e.g. implicitly representing sub‐grid heterogeneity in soils), and helps infer appropriate values for model parameters. The approach used in this paper demonstrates the benefits of flexible model structures in the context of hypothesis testing, in particular, supporting a more systematic exploration of current ambiguities in hydrological process representation. The challenge for the hydrological community is to make better use of the available data, not only to estimate parameter values but also to diagnostically identify more scientifically defensible model structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
采用定参理想集总参数计算体系,以动力基础非线性动力学模型和非线性广义刚度函数的概念为基础,将动力基础模型从竖向非线性振动推广至水平非线性振动、扭转非线性振动以及水平-回转二自由度耦合非线性振动和竖向-水平-回转三自由度非线性耦合振动,建立了动力基础非线性动力学模型的一般表达式,为动力基础非线性设计提供了理论。  相似文献   

18.
Substructure hybrid simulation has been actively investigated and applied to evaluate the seismic performance of structural systems in recent years. The method allows simulation of structures by representing critical components with physically tested specimens and the rest of the structure with numerical models. However, the number of physical specimens is limited by available experimental equipment. Hence, the benefit of the hybrid simulation diminishes when only a few components in a large system can be realistically represented. The objective of the paper is to overcome the limitation through a novel model updating method. The model updating is carried out by applying calibrated weighting factors at each time step to the alternative numerical models, which encompasses the possible variation in the experimental specimen properties. The concept is proposed and implemented in the hybrid simulation framework, UI‐SimCor. Numerical verification is carried out using two‐DOF systems. The method is also applied to an experimental testing, which proves the concept of the proposed model updating method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号