首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Accurate runoff and soil erosion modeling is constrained by data availability, particularly for physically based models such as OpenLISEM that are data demanding, as the processes are calculated on a cell‐by‐cell basis. The first decision when using such models is to select mapping units that best reflect the spatial variability of the soil and hydraulic properties in the catchment. In environments with limited data, available maps are usually generic, with large units that may lump together the values of the soil properties, affecting the spatial patterns of the predictions and output values in the outlet. Conversely, the output results may be equally acceptable, following the principle of equifinality. To studyhow the mapping method selected affects the model outputs, four types of input maps with different degrees of complexity were created: average values allocated to general soil map units (ASG1), average values allocated to detailed map units (ASG2), values interpolated by ordinary kriging (OK) and interpolated by kriging with external drift (KED). The study area was Ribeira Seca, a 90 km2 catchment located in Santiago Island, Cape Verde (West Africa), a semi‐arid country subject to scarce but extreme rainfall during the short tropical summer monsoon. To evaluate the influence of rainfall on runoff and erosion, two storm events with different intensity and duration were considered. OK and KED inputs produced similar results, with the latter being closer to the observed hydrographs. The highest soil losses were obtained with KED (43 ton ha? 1 for the strongest event). To improve the results of soil loss predictions, higher accurate spatial information on the processes is needed; however, spatial information of input soil properties alone is not enough in complex landscapes. The results demonstrate the importance of selecting the appropriate mapping strategy to obtain reliable runoff and erosion estimates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The problem of obtaining field‐scale surface response to rainfall events is complicated by the spatial variability of infiltration characteristics of the soil and rainfall. In this paper, we develop and test a simplified model for generating surface runoff over fields with spatial variation in both rainfall rate and saturated hydraulic conductivities. The model is able to represent the effects of local variation in infiltration, as well as the run‐on effect that controls infiltration of excess water from saturated upstream areas. The effective rainfall excess is routed to the slope outlet using a simplified solution of the kinematic wave approximation. Model results are compared to averaged hydrographs from numerically‐intensive Monte–Carlo simulations for observed and design rainfall events and soil patterns that are typical of Central Italy. The simplified model is found to yield satisfactory results at a relatively small computational expense. A proposal to include a simple channel routing scheme is also presented as a prelude to extend this conceptualization to watershed scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
No-till (NT) is a conservation system that improves the hydrological regime of agricultural slopes by providing greater surface protection and benefits to the physical and hydrological properties of soils. However, the isolated use of NT is not enough to control runoff and its associated degradation processes. Therefore, this study aimed to evaluate the runoff of agricultural slopes under NT under different runoff control conditions by monitoring 63 rainfall events in two 2.4-ha zero-order catchments and 27 rainfall events in four 0.6-ha macroplots. The catchments are paired and similar in terms of the type of soil and relief, but different regarding the presence of terraces. The macroplots have different soil and crop management systems. By using monitoring techniques, the hyetographs and hydrographs revealed the influence of the different types of management on the catchments and macroplots and allowed rainfall characteristics, runoff volume, runoff coefficients, water infiltration, peak runoff, response times, and curve number to be analysed. The terraces positively affected the NT and controlled runoff and related variables, in addition to infiltration significantly increasing and runoff reducing in the terraced catchment. All the hydrological information assessed pointed to the positive effects provided by the presence of the terraces. The results in the macroplots showed that high amounts of phytomass and/or chiselling do not control runoff and its correlated variables in medium and high magnitude events. The study concludes by underlining the need for additional measures to control runoff (terraces), even in areas under NT and with high phytomass production. Additionally, the study emphasizes the importance of monitoring at the catchment scale to better understand the hydrological behaviour of agricultural areas and provide the necessary parameters to effectively control runoff.  相似文献   

5.
The results of a hydrological analysis that was conducted as part of a larger, multifaceted, collaborative effort to quantify ecosystem functions in watersheds subjected to land‐use and land‐cover change are presented. The primary goal of the study was to determine whether a small watershed in the Appalachian region (USA) that was recently subjected to surface mining and reclamation practices produces stormflow responses to rain events that are different from those produced by a nearby reference watershed covered by young, second‐growth forest. Water balances indicated that runoff yields did not vary significantly between the two watersheds on an annual basis. Statistically significant differences (p?0·05) in runoff responses were observed on an event basis, however, with the mined/reclaimed watershed producing, on average (a) higher storm runoff coefficients (2·5×), (b) greater total storm runoff (3×), and (c) higher peak hourly runoff rates (2×) when compared with the reference watershed. Results of a unit hydrograph analysis also showed, unexpectedly, that the modelled unit responses of the two watersheds to effective rainfall pulses were similar, despite the noted differences in land cover. Differences in stormflow responses were thus largely explained by dramatic reductions in cumulative rates of rainfall abstraction (measured using infiltrometers) attributable to soil compaction during land reclamation. Additional field hydrological measurements on other mined watersheds will be needed to generalize our results, as well as to understand and predict the cumulative hydrological impacts of widespread surface mining in larger watersheds and river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Giora J. Kidron 《水文研究》2016,30(11):1665-1675
Known also as ‘islands of fertility’, under‐canopy habitats in arid and semiarid regions experience reduced radiation, milder temperatures, lower evaporation, higher organic matter and sometimes even high‐biomass biocrusts. By shielding the soil from direct raindrop impact (and thus preventing the formation of a physical crust (PC)), but providing longer surface wetness duration that facilitate longer biocrust activity, the under‐canopy habitat affects runoff and subsequently sediment yield. In an attempt to evaluate the shrub role in runoff and sediment yields on biocrusted surfaces that lack PC, triplicate plots were established and monitored in the Nizzana Research Site (NRS) during 1990–1995 at the under‐canopy of (a) undisturbed biocrust (CUC), (b) disturbed (rodent pits and tunnels) biocrust (DUC) and (c) on non‐shaded biocrust that served as control (COT). The data showed high variability in between the plots, with runoff and sediment yields following the pattern COT > CUC > DUC. However, while significant differences characterized the sediment yields of DUC and COT and CUC and COT, only DUC yielded significantly lower amounts of runoff than COT, while runoff at COT and CUC did not exhibit significant differences. Multiple regression analysis showed that biocrust cover and weighed chlorophyll best explained runoff yield. Overall, runoff of all plots yielded a significant high correlation with the biocrust cover (r2 = 0.91) and weighed chlorophyll content (r2 = 0.77), with significantly high correlation being also obtained between runoff and sediment yields (r2 = 0.74). It is concluded that unlike non‐biocrusted surfaces where shrubs may affect runoff yield by preventing the formation of PC and thus runoff generation, high‐biomass biocrust at NRS acts to compensate for the absence of PC and may yield, during certain events, comparable amounts of runoff to that of non‐shaded habitats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Despite the high risk of erosion in olive orchards located in mountainous areas in Spain, little research has been carried out to account for the complexity and interaction of the natural processes of runoff and soil erosion on the catchment scale or small catchment scale. In this study, a microcatchment of 6·7 ha in a mountainous area under no‐tillage farming with bare soil was set up to record runoff and sediment. Soil erosion and runoff patterns were monitored over a two‐year period. Totally, 22 events were observed. The data were analysed, and then used to calibrate the AnnAGNPS model, which allowed us to complete the data period and describe the hydrological and erosive behaviour on a monthly and annual basis. A high variability in catchment responses was observed, due to differences in the storms and to the effect of the surface soil moisture content. Maximum intensities of 10 and 30 min determined the final runoff values while the total sediment loads were dependent on the rainfall depth. The impact of management on the reduction of porosity can explain the relationship between runoff and intensity in the microcatchment. However, the impact of the spatial scale meant that the transport of sediment required substantial rainfall depths to ensure a continuous flow from the hillslopes. The results of the calibration (>0·60 and >0·75) on the event and monthly scale confirmed the applicability of AnnAGNPS to predict runoff and erosion in the microcatchment. The predicted average runoff coefficient was 3·3% for the study period and the total average sediment loads, 1·3 Mg/ha/yr. Despite these low values, the model simulation showed that much larger runoff coefficients and soil losses can be expected for periods with several consecutive years in which the annual rainfall depth was over 500 mm. The use of cover is recommended to prevent the high levels of erosion associated with these conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A number of watershed‐scale hydrological models include Richards' equation (RE) solutions, but the literature is sparse on information as to the appropriate application of RE at the watershed scale. In most published applications of RE in distributed watershed‐scale hydrological modelling, coarse vertical resolutions are used to decrease the computational burden. Compared to point‐ or field‐scale studies, application at the watershed scale is complicated by diverse runoff production mechanisms, groundwater effects on runoff production, runon phenomena and heterogeneous watershed characteristics. An essential element of the numerical solution of RE is that the solution converges as the spatial resolution increases. Spatial convergence studies can be used to identify the proper resolution that accurately describes the solution with maximum computational efficiency, when using physically realistic parameter values. In this study, spatial convergence studies are conducted using the two‐dimensional, distributed‐parameter, gridded surface subsurface hydrological analysis (GSSHA) model, which solves RE to simulate vadose zone fluxes. Tests to determine if the required discretization is strongly a function of dominant runoff production mechanism are conducted using data from two very different watersheds, the Hortonian Goodwin Creek Experimental Watershed and the non‐Hortonian Muddy Brook watershed. Total infiltration, stream flow and evapotranspiration for the entire simulation period are used to compute comparison statistics. The influences of upper and lower boundary conditions on the solution accuracy are also explored. Results indicate that to simulate hydrological fluxes accurately at both watersheds small vertical cell sizes, of the order of 1 cm, are required near the soil surface, but not throughout the soil column. The appropriate choice of approximations for calculating the near soil‐surface unsaturated hydraulic conductivity can yield modest increases in the required cell size. Results for both watersheds are quite similar, even though the soils and runoff production mechanisms differ greatly between the two catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
As a consequence of the remote location of the Andean páramo, knowledge on their hydrologic functioning is limited; notwithstanding, these alpine tundra ecosystems act as water towers for a large fraction of the society. Given the harsh environmental conditions in this region, year‐round monitoring is cumbersome, and it would be beneficial if the monitoring needed for the understanding of the rainfall–runoff response could be limited in time. To identify the hydrological response and the effect of temporal monitoring, a nested (n = 7) hydrological monitoring network was set up in the Zhurucay catchment (7.53 km2), south Ecuador. The research questions were as follows: (1) Can event sampling provide similar information in comparison with continuous monitoring, and (2) if so, how many events are needed to achieve a similar degree of information? A subset of 34 rainfall–runoff events was compared with monthly values derived from a continuous monitoring scheme from December 2010 to November 2013. Land cover and physiographic characteristics were correlated with 11 hydrological indices. Results show that despite some distinct differences between event and continuous sampling, both data sets reveal similar information; more in particular, the monitoring of a single event in the rainy season provides the same information as continuous monitoring, while during the dry season, ten events ought to be monitored. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

16.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The ecological situation of the Tarim River basin in China seriously declined since the early 1950s, mainly due to a strong increase in water abstraction for irrigation purposes. To restore the ecological system and support sustainable development of the Tarim River basin region in China, more hydrological studies are demanded to properly understand the processes of the watershed and efficiently manage the water resources. Such studies are, however, complicated due to the limited data availability, especially in the mountainous headwater regions of the Tarim River basin. This study investigated the usefulness of remote sensing (RS) data to overcome that lack of data in the spatially distributed hydrological modelling of the basin. Complementary to the conventional station‐based (SB) data, the RS products that are directly used in this study include precipitation, evapotranspiration and leaf area index. They are derived from raw image data of the Chinese Fengyun meteorological satellite and from the Moderate Resolution Imaging Spectroradiometer (MODIS). The MODIS land surface temperature was used to calculate the atmospheric temperature lapse rate to describe the temperature dependency on topographical variations. Moreover, MODIS‐based snow cover images were used to obtain model initial conditions and as validation reference for the snow model component. Comparison of model results based on RS input versus conventional SB input exhibited similar results in terms of high and low river runoff extremes, cumulative runoff volumes in both runoff and snow melting seasons and spatial and temporal variability of snow cover. During summer time, when the snow cover shrinks in the permanent glacier region, it was found that the model resolution influences the model results dramatically, hence, showing the importance of detailed (RS based) spatially distributed input data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Municipalities and agencies use green infrastructure to combat pollution and hydrological impacts (e.g., flooding) related to excess stormwater. Bioretention cells are one type of infiltration green infrastructure intervention that infiltrate and redistribute otherwise uncontrolled stormwater volume. However, the effects of these installations on the rest of the local water cycle is understudied; in particular, impacts on stormwater return flows and groundwater levels are not fully understood. In this study, full water cycle monitoring data were used to construct and calibrate a two‐dimensional Richards equation model (HYDRUS‐2D/3D) detailing hydrological implications of an unlined bioretention cell (Cleveland, Ohio) that accepts direct runoff from surrounding impervious surfaces. Using both preinstallation and postinstallation data, the model was used to (a) establish a mass balance to determine reduction in stormwater return flow, (b) evaluate green infrastructure effects on subsurface water dynamics, and (c) determine model sensitivity to measured soil properties. Comparisons of modelled versus observed data indicated that the model captured many hydrological aspects of the bioretention cell, including subsurface storage and transient groundwater mounding. Model outputs suggested that the bioretention cell reduced stormwater return flows into the local sewer collection system, though the extent of this benefit was attenuated during high inflow events that may have exhausted detention capacity. The model also demonstrated how, prior to bioretention cell installation, surface and subsurface hydrology were largely decoupled, whereas after installation, exfiltration from the bioretention cell activated a new groundwater dynamic. Still, the extent of groundwater mounding from the cell was limited in spatial extent and did not threaten other subsurface infrastructure. Finally, the sensitivity analysis demonstrated that the overall hydrological response was regulated by the hydraulics of the bioretention cell fill material, which controlled water entry into the system, and by the water retention parameters of the native soil, which controlled connectivity between the surface and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号