首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pleistocene sedimentary sequences in the East Anglian region of Britain record both major and minor climatic oscillations, and the impact of isostatic and eustatic variations. Intensively studied in terms of their lithology and biostratigraphy, the sequences have been difficult to place in an absolute timeframe. Dating and correlation by magnetostratigraphy has been attempted over a number of years. However, these sediments are difficult to date by palaeomagnetic means because they are poor in detrital magnetite, are subject to post‐depositional deformation and diagenesis, and have unknown rates of sedimentation. Determining whether their natural remanence magnetisation (NRM) directions are reliable thus requires information on the mode and timing of remanence acquisition. Here, we apply palaeomagnetic, rock magnetic and mineralogical analyses to identify the NRM carriers in these sediments and hence their palaeomagnetic reliability. Within oxidised fluvial sediments (the Kesgrave Formation), the magnetic carriers appear to be relict magnetic minerals (ferrian ilmenites, chromites, haematite and goethite), which sometimes carry a reliable primary depositional remanence (DRM) but often an overprinting viscous (time‐varying) remanence (VRM). Within some reduced marine and intertidal sediments (within the Crag basin), the iron sulphide, greigite, has been found to carry a reliable, ‘syn’‐depositional chemical remanence (CRM). In all the sediments, magnetic inclusions within silicates are abundant, are significant for the mineral magnetic signal but contribute little to any recoverable palaeomagnetic information. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Prior to its disruption during the Anglian glaciation (MIS 12), the Ingham or Bytham River used to flow eastwards across central England and East Anglia into the southern North Sea. It thus had a much larger catchment than any extant river system in Britain; its headwaters may well have been as far away as North Wales and/or NW England. Terrace deposits of this former river system crop out across East Anglia and, as for any other river, can be used to investigate uplift, landscape evolution and the physical properties of the underlying continental crust. However, such an investigation has hitherto been hampered by inconsistencies between different authors' terrace schemes; furthermore, and controversially, one such scheme has formed the basis for the inference that the region was affected by a pre‐Anglian (MIS 16) glaciation. By re‐examining the raw data, the Ingham River deposits are shown to be disposed in three terraces, inferred to date from MIS 16, 14 and 12. The evidence previously attributed to pre‐Anglian glaciation is associated with the youngest of these terraces, and thus marks the MIS 12 (i.e. Anglian) glaciation; the argument for glaciation of the region in MIS 16 is thus an artefact of previous miscorrelation of the terrace deposits. It is inferred that development of the very large Ingham River was synchronous with decapitation of the former ‘Greater Thames’, or ‘High‐level Kesgrave Thames’ river, some time between MIS 18 and MIS 16. Uplift histories at representative localities across East Anglia have been modelled using composite data sets, combining the terrace deposits of the Ingham River and of the post‐Anglian rivers Lark and Waveney. The sites modelled are typefied by much faster uplift in the early Middle Pleistocene than in the late Middle Pleistocene; this effect is shown to be a consequence of the relative thinness (no more than ~7–8 km thick) of the mobile lower‐crustal layer, itself a consequence of the low surface heat flow in the London Platform crustal province. The post‐Early Pleistocene uplift tapers eastward, consistent with the observed downstream convergence of the Ingham and Waveney terraces, and is close to zero near the modern coastline around Lowestoft and Great Yarmouth. Stratigraphic relationships between the Ingham terrace deposits and temperate‐stage marine and terrestrial deposits in this coastal area allow sites to be dated; thus, Pakefield and Corton date from MIS 15, whereas Norton Subcourse dates from MIS 17. The oldest known Lower Palaeolithic sites in the region, characterized by flake artefacts, are Pakefield (MIS 15) and Hengrave (?MIS 14); younger pre‐Anglian sites that have yielded handaxes and/or fossil material of the water vole Arvicola cantiana date from MIS 13. The minimal vertical crustal motion in this coastal area, where temperate‐stage deposits from different climate cycles crop out close to present‐day sea level, does not imply high crustal stability; instead, it indicates a ‘hinge zone’ between the uplifting hinterland and the subsiding depocentre in the southern North Sea.  相似文献   

3.
Erratic clasts with a mass of up to 15 kg are described from preglacial shallow marine and coastal deposits (Wroxham Crag Formation) in northeast Norfolk. Detailed examination of their petrology has enabled them to be provenanced to northern Britain and southern Norway. Their clustered occurrence in coastal sediments in Norfolk is believed to be the product of ice-rafting from glacier incursions into the North Sea from eastern Scotland and southern Norway, and their subsequent grounding and melting within coastal areas of what is now north Norfolk. The precise timing of these restricted glaciations is difficult to determine. However, the relationship of the erratics to the biostratigraphic record and the first major expansion of ice into the North Sea suggest these events occurred during at least one glaciation between the late Early Pleistocene and early Middle Pleistocene (c. 1.1–0.6 Ma). In contrast to the late Middle (Anglian) and Late Pleistocene (Last Glacial Maximum) glaciations, where the North Sea was largely devoid of extensive marine conditions, the presence of far-travelled ice-rafted materials implies that earlier cold stage sea-levels were considerably higher.  相似文献   

4.
J. Rose 《地学学报》1994,6(5):435-443
Central and southern Britain was drained by two main river systems during the larger part of the Early and Middle Pleistocene: the Thames and Bytham rivers. Evidence for these rivers and their Quaternary history is represented by their sediments (the Kesgrave and Bytham Sands and Gravels, respectively), the geomorphological position of the sediments, biostratigraphy and amino acid geochronology. Evidence from the earlier parts of the Early Pleistocene (Tiglian C4b and earlier) indicates low-energy river systems and marine conditions over much of East Anglia. For most of the Early Pleistocene (Tiglian C4c to the Cromerian Complex) the ancestral Thames was the main river with, at its maximal extent, a catchment that extended into Wales, and across East Anglia and what is now the North Sea, to join the ancestral Rhine. During this period, glaciers in the uplands of Wales and periglacial mass movement elsewhere supplied material to the catchment and it was at this time that the bulk of the sorted Quaternary ssediments of lowland Britain were deposited. The Bytham river system has no successor because the landscape now in existence has been fundamentally altered by glacial erosion. This catchment drained most of Midland England and joined the Thames in central East Anglia. Initially, the Bytham river was a tributary of the Thames, but over time it extended its catchment and at the beginning of the 'Cromerian Complex'it became the main river of southern Britain. With the Anglian Glaciation (01 Stage 121, the Bytham river was destroyed and the Thames was diverted to its present route through London.  相似文献   

5.
The palaeontological site of Venta Micena (Orce, Andalusia, Spain) lies in the eastern sector of the Guadix–Baza basin, one of the best documented areas in Europe for Plio‐Pleistocene biostratigraphy. The combination of biochronological and palaeomagnetic results, combined with the radiometric data obtained for Atapuerca Sima del Elefante, indicated that the Venta Micena stratum was formed between the Jaramillo and Olduvai palaeomagnetic events, most likely between 1.22 and 1.77 Ma. Five fossil teeth from two outcrops (sites A and B) were selected to assess the potential of combined uranium series–electron spin resonance (US‐ESR) dating of Early Pleistocene sites. Although the US‐ESR results of the first outcrop showed a large scatter between the three teeth, the mean age of 1.37 ± 0.24 Ma can be considered a reasonable age estimate for Venta Micena. The mean ESR age of 0.62 ± 0.03 Ma obtained for site B seems to be a severe underestimation when compared with the independent age control. This underestimation is attributed to a relative recent U‐mobilization event that led to some U‐leaching. The results show that any ESR age calculations of old samples are extremely sensitive to variations in the measured 230Th/234U ratios in dental tissues. Although the results demonstrate that ESR can in principle be applied to Early Pleistocene sites, they also reveal the complexity of dating such old teeth. It is necessary to continue research in several directions, such as study of the behaviour of ESR signals in old teeth and understanding recent U‐mobilization processes, to improve the reliability of the combined US‐ESR dating method applied to Early Pleistocene times, a period for which the number of available numerical dating techniques is very limited. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper links research questions in Quaternary geology with those in Palaeolithic archaeology. A detailed geological reconstruction of The Netherlands' south‐west offshore area provides a stratigraphical context for archaeological and palaeontological finds. Progressive environmental developments have left a strong imprint on the area's Palaeolithic record. We highlight aspects of landscape evolution and related taphonomical changes, visualized in maps for critical periods of the Pleistocene in the wider southern North Sea region. The Middle Pleistocene record is divided into two palaeogeographical stages: the pre‐Anglian/Elsterian stage, during which a wide land bridge existed between England and Belgium even during marine highstands; and the Anglian/Elsterian to Saalian interglacial, with a narrower land bridge, lowered by proglacial erosion but not yet fully eroded. The Late Pleistocene landscape was very different, with the land bridge fully dissected by an axial Rhine–Thames valley, eroded deep enough to fully connect the English Channel and the North Sea during periods of highstand. This tripartite staging implies great differences in (i) possible migration routes of herds of herbivores as well as hominins preying upon them, (ii) the erosion base of axial and tributary rivers causing an increase in the availability of flint raw materials and (iii) conditions for loess accumulation in northern France and Belgium and the resulting preservation of Middle Palaeolithic sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Investigations in quarry exposures in the Asheldham Gravel and related deposits of southeast Essex are described. Section logging, mapping and borehole investigations are supported by clast lithological, heavy and clay mineralogical determinations. The sediments are derived from reworking of local Thames basin materials, fine sediment being predominantly from the London Clay. The sequence is shown to represent an aggradation that began as the fluvial infilling of the River Medway valley. The River Thames, diverted into this valley by glaciation further west, overwhelmed the Medway, reworking the deposits. The valley was subsequently drowned and fine laminated lake sediment was initially deposited. This was during a period when the valley was drowned by the glacial lake ponded in the southern North Sea basin by the Anglian/Elsterian ice sheet. Progradation by a braid-delta complex advanced along the valley and subsequently fluvial deposition returned. Valley widening and straightening accompanied the delta progradation. The deposits were dissected by deep fluvial valleys infilled by Hoxnian interglacial sediments. The Asheldham Gravel is therefore placed in the Anglian/Elsterian Stage.  相似文献   

8.
Two major river systems operated in southern and eastern England throughout the Pleistocene: the river Thames and the Solent river. Both rivers are axial streams of comparable size draining major basinal structures comprising similar Tertiary and Mesozoic rocks. Although the modem Thames flows broadly W-E in the London Basin, upstream of Reading it flows from the north to drain the south Midlands. It was diverted to its present course through London by glaciation in the Anglian (Elsterian) before which it flowed across East Anglia into the southem North Sea. The Solent river no longer exists since most of its course was drowned by eustatic sea-level rise during the Flandrian Stage (Holocene). Previously, it flowed eastwards across SE Dorset and S Hampshire as an extension of the modem river Frome in the Hampshire Basin. During periods of low sea-level (cold stages) it was a tributary of the 'Channel River'. Fluvial aggradations provide evidence of the former courses of these substantial rivers and their tributaries. The facies and sedimentary structures indicate that the bulk of the deposits in both systems accumulated in braided river environments under periglacial climates. Fossiliferous sediments provide biostratigraphical frameworks. During temperate periods the rivers adopted singlethread courses. Evolution of both rivers reflect their responses to climatic change, local geological structure and long-term tectonic activity. Both rivers are undoubtedly of considerable antiquity, their records potentially extend from the Early Pleistocene or Late Pliocene, but they may have originated in the early Tertiary.  相似文献   

9.
Palaeomagnetic poles derived from Precambrian formations can be valuable for determining relative, and sometimes absolute, ages of the formations. In this paper palaeomagnetic results are presented from a variety of these formations in Tanzania and Zambia. The Ikorongo Group sediments of Tanzania give a pole at 80° E, 25° S commensurate with an age of 900–1000 m.y. The lower Buanji Series of southern Tanzania yields a pole at 263°E,87°N indicating an age of either Late Precambrian (c. 650 m.y.) or Early Cambrian. The Plateau Series outcrop at the southern end of Lake Tanganyika gives several poles falling on the Late Precambrian to Ordovician apparent polar wander loop recognized by McElhinny et al. (1974), and a small amount of evidence from the Abercorn Sandstone and southern part of the Plateau Series outcrop suggests an age of c. 900 m.y. for these rocks. Dating of formations at the southern end of the Lake Tanganyika depression gives an estimate of 1500 m for the minimum amount of downthrow at this end of the rift system. Five sites from the Mbozi gabbro—syenite complex of southern Tanzania give a pole at 68° E, 72° N and two sites from Mbala dolerites of Zambia yield a pole close to one from the Bukoban dolerites of Tanzania and a similar age (c. 806 m.y.) is suggested.Some palaeomagnetic information is now available from all the Proterozoic platform sediments margining the Tanganyika craton and a correlation scheme is given which incorporates this information together with geochronological data. These formations postdate geosynclinal sequences involved in the Kibaran (c. 1300 m.y.) and Irumide (c. 1100 m.y.) mobile belts, and geological environment and situation demonstrate that the Tanganyika craton was subject to intermittent uplift between about 1000 m.y. and Cambrian times.  相似文献   

10.
研究目的】在末次冰期,全球气候变化以千年尺度的快速、大幅度温度波动旋回为特征,这种波动变化在两极冰芯、深海沉积、中国黄土和洞穴石笋等诸多地质样品中均有记录。黑海位于北大西洋与东亚季风区过渡带,具有极有代表性的沉积记录。本文旨在通过对黑海沉积序列的研究,建立起其区域环境变化与北大西洋及东亚季风气候域气候变化的联系。【研究方法】研究对取自黑海西北部罗马尼亚陆坡区多瑙河峡谷北侧GAS-CS12钻孔的长22.0 m的岩芯样品,进行了粒度、矿物成分、主量元素、有机碳、总氮及碳氮同位素等分析。【研究结果】揭示出该段岩芯沉积于末次冰期中后期“Neoeuxine”湖相阶段,可划分为5个沉积单元,对应于北大西洋H4、H3、H1气候变化事件、末次冰盛期(LGM)及Bolling-Allerod气候变暖事件。【结论】建立起了其沉积序列及区域环境变化与北大西洋及东亚季风气候域气候变化的联系,印证了末次冰期千年尺度的气候变化事件在北大西洋、东亚季风区及两者过渡带上具有高度的一致性。创新点:建立了黑海西北沉积序列与区域环境变化的关系;补充了北大西洋与东亚季风区两者过渡带上气候波动事件的可靠时标。  相似文献   

11.
The Plio‐Pleistocene non‐marine sequence in the northeast Guadix–Baza Basin (southern Spain) comprises alluvial and lacustrine deposits (Baza Formation). The results of a revised lithostratigraphical correlation between sections from the middle and upper members of the Baza Formation in the northeast part of the basin, supported by detailed mapping, is presented. The position of micromammal sites in the lithostratigraphical scheme, together with the results of intensive palaeontological sampling for small mammal remains, has allowed us to develop a high‐resolution biostratigraphical framework for the area. This provides an opportunity to refine the biozonation for the Plio‐Pleistocene micromammal faunas, and to define faunal events from the late Villanyian (late Pliocene) to the early Pleistocene. On the basis of the lithostratigraphical and biostratigraphical approaches we obtain the following sequence of biozones for the late Pliocene to early Pleistocene: Kislangia gusii, Mimomys cf. reidi, M. oswaldoreigi, Allophaiomys pliocaenicus and A. burgondiae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Major and trace element chemical analyses of the Plio‐Pleistocene Bardin Bluffs Formation, on the margin of a major ice‐stream of the East Antarctic Ice Sheet, yield an anomalous chemically altered sediment composition. The Bardin Bluffs Formation of the Pagodroma Group is one of the key deposits on the Antarctic continent recording glaciomarine sedimentation under open marine fjord conditions as recently as the Plio‐Pleistocene. In modern fjords occupied by outlet glaciers of ice sheets, the composition of fine‐grained terrigenous sediments approaches that of unweathered rock types exposed upstream. In the Bardin Bluffs Formation, average abundances of stable elements (Ti, Al, Zr) approach average upper crustal compositions and the element ratios are consistent with sediments with a cratonic source, implying glacial dispersal from a large shield area through the Lambert Glacier drainage system. Interestingly, the chemical index of alteration (CIA) of these sediments has values similar to those of average shales formed under conditions of chemical weathering. The sediments are particularly depleted in silicate Ca, which has been observed elsewhere in glacial muds sourced from pre‐glacial saprolites. The anomalous chemistry of the Bardin Bluffs Formation can be explained by a sequence of events, involving chemical weathering prior to glacial expansion and erosion. The presence of a remnant 1·5 m deep late Neogene weathering profile at the base of the Bardin Bluffs sequence corroborates this conclusion. Supply of large quantities of chemically weathered materials to Antarctic marginal basins requires at least partial deglaciation of the continent and was previously regarded as uncharacteristic for late Neogene Antarctica.  相似文献   

13.
Offshore stratigraphic records from the North Sea contain information to reconstruct palaeo-ice-sheet extent and understand sedimentary processes and landscape response to Pleistocene glacial–interglacial cycles. We document three major Middle to Late Pleistocene stratigraphic packages over a 401-km2 area (Norfolk Vanguard/Boreas Offshore Wind Farm), offshore East Anglia, UK, through the integration of 2D seismic, borehole and cone penetration test data. The lowermost unit is predominantly fluviatile [Yarmouth Roads Formation, Marine Isotope Stage (MIS) 19–13], including three northward-draining valleys. The middle unit (Swarte Bank Formation) records the southernmost extent of tunnel valley-fills in this area of the North Sea, providing evidence for subglacial conditions most likely during the Anglian stage (MIS 12) glaciation. The Yarmouth Roads and Swarte Bank deposits are truncated and overlain by low-energy estuarine silts and clays (Brown Bank Formation; MIS 5d–4). Smaller scale features, including dune-scale bedforms, and abrupt changes in cone penetration test parameters, provide evidence for episodic changes in relative sea level within MIS 5. The landscape evolution recorded in deposits of ~MIS 19–5 are strongly related to glacial–interglacial cycles, although a distinctive aspect of this low-relief ice-marginal setting are opposing sediment transport directions under contrasting sedimentary process regimes.  相似文献   

14.
A 140.2 m deep boring (BH 81/29) from the central North Sea (British sector) has been investigated for its foraminiferal content. Fourteen assemblage zones are identified, and these are correlated with other records from the North Sea region. The stratigraphical interpretation of BH 81/29 is supported by palaeomagnetic data and by amino acid dates and thermoluminescence dates from the same boring. Foraminiferal zones 14 to 8, from the bottom of the core, have been referred to the Early Pleistocene. Zones 7 to 4, which occur above the Bruhnes/Matuyama boundary, seem to belonged in the Middle Pleistocene, and zones 3 to 1 are referred to the Late Pleistocene. A characteristic feature of the present sequence is that a major part of the Quaternary record seems to be missing. As is also known from other areas of the North Sea, interglacial deposits are especially badly represented.  相似文献   

15.
Glaciotectonized sediments and palaeosol at Great Sampford, western Suffolk, England are reconstructed to their original positions in order to determine the form of the original land surface and the associated soil development. The restored stratigraphy consists of Early Pleistocene Kesgrave Sands and Gravels which were deposited by the 'pre-glacial' river Thames, with the Early-Middle Pleistocene Valley Farm Soil developed on a terrace surface. These units are overlain by Sampford Deformation Till and Lowestoft Till, which were formed during the Middle Pleistocene Anglian glaciation. The micromorphological features of the reconstructed soil are interpreted in terms of three climatic cycles, each comprising a period of temperate climate soil formation followed by cold climate soil disruption. The final stage of disruption is associated with the periglacial climate that preceded Anglian glacierization. This pedological reconstruction is the most complex yet recognized from British Early and Middle Pleistocene palaeosols and provides an insight into major climatic oscillations prior to the Anglian Glaciation. The surface upon which the soil developed is one of the oldest terraces of the 'pre-glacial' River Thames that were formed when this river flowed northwards through East Anglia.  相似文献   

16.
Clay Minerals in Sediments of the Arctic Seas   总被引:2,自引:0,他引:2  
The distribution of clay minerals in recent sediments on the Arctic shelf off the Eurasian and North American continents is considered. Prominence is given to the East Siberian and Laptev seas. The illite belt established on the basis of the composition of clay minerals in seven Arctic seas stretches from the Beaufort Sea to the White Sea and reveals a mineralogical zonality. The belt can be devided into smectite and chlorite provinces. Factors governing the formation of the Arctic illite belt and features of the distribution of individual clay minerals are discussed. The identification of the illite belt in sediments on the Arctic shelf complements the system of planetary latitudinal zones of clay minerals formulated by previous researchers.  相似文献   

17.
This paper outlines evidence from Pakefield (northern Suffolk), eastern England, for sea‐level changes, river activity, soil development and glaciation during the late Early and early Middle Pleistocene (MIS 20–12) within the western margins of the southern North Sea Basin. During this time period, the area consisted of a low‐lying coastal plain and a shallow offshore shelf. The area was drained by major river systems including the Thames and Bytham. Changes in sea‐level caused several major transgressive–regressive cycles across this low‐relief region, and these changes are identified by the stratigraphic relationship between shallow marine (Wroxham Crag Formation), fluvial (Cromer Forest‐bed and Bytham formations) and glacial (Happisburgh and Lowestoft formations) sediments. Two separate glaciations are recognised—the Happisburgh (MIS 16) and Anglian (MIS 12) glaciations, and these are separated by a high sea level represented by a new member of the Wroxham Crag Formation, and several phases of river aggradation and incision. The principal driving mechanism behind sea‐level changes and river terrace development within the region during this time period is solar insolation operating over 100‐kyr eccentricity cycles. This effect is achieved by the impact of cold climate processes upon coastal, river and glacial systems and these climatically forced processes obscure the neotectonic drivers that operated over this period of time. © British Geological Survey/Natural Environment Research Council copyright 2005. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

18.
A detailed study of the foraminiferal assemblages from the 229.1-m-deep core 81/34 in the central North Sea has been combined with a series of measurements of the isoleucine epimerisation of foraminiferal tests. A total of 17 foraminiferal zones have been established and both the faunal compositions and the amino-acid values suggest that a major part of the sequence represents deposits of early and middle Pleistocene age. Only the uppermost zone is referred to the late Pleistocene. The sequence mainly comprises a series of marine zones from cold periods, but with some barren, possibly non-marine intervals in between. Only two of the foraminiferal zones can be referred to interglacial periods. The oldest one of these, defined here as the Devils Hole Interglacial, may belong to the latter part of the Cromerian Complex, while the upper warm interval is correlated with the Holsteinian of northwest Europe on the basis of its amino-acid values. A detailed stratigraphical correlation between core 81/34 and the neighbouring core 81/29 is suggested on the basis of their foraminiferal content, palaeomagnetic evidence and amino-acid measurements from both cores. A characteristic feature of both sequences is that most of the Quaternary record is missing. Similar episodic patterns of deposition and erosion have been reported previously from the North Sea area.  相似文献   

19.
对东海外陆架中部表层沉积物34个样品,南部两个岩心75个样品的沉积物特征和重矿物特征进行了分析,计算了其中有用重矿物砂的品位。东海外陆架晚更新世残留沉积中有用的重矿物砂来源于中国大陆,其含量与细砂含量、重矿物总量、沉积物的粒度和分选性呈正相关关系。重矿物砂赋存在海退层位中,形成于滨岸带,并经过后期海侵过程的改造和进一步富集,主要分布在水深100~200 m范围内。外陆架中部有用重矿物砂高品位异常区面积达1.2×10.4 km锆石和石榴石品位达到Ⅰ级异常。南部岩心中异常品位的有用重矿物砂的厚度1.5~2 m,锆石品位达到工业边界品位,研究区钛铁矿普遍出现Ⅱ级和Ⅱ级以上的异常品位。东海外陆架区浅海砂矿成矿条件较好,具有较大的资源潜力,值得进一步调查研究。  相似文献   

20.
The most complete terrestrial sequence of Anglian (Elsterian) glacial sediments in western Europe was investigated in northeast Norfolk, England in order to reconstruct the evolution of the contemporary palaeoenvironments. Lithostratigraphically the glacial sediments in the northeast Norfolk coastal cliffs can be divided into the Northn Sea Drift and Lowestoft Till Formations. Three of the diamicton members of the North Sea Drift Formation (Happisburgh, Walcott and Cromer Diamictons) were deposited as lodgement and/or subglacial deformation till by grounded ice, but one, the Mundesley Diamicton, is waterlain and was deposited in an extensive glacial lake. Sands and fine sediments interbedded between the diamictons represent deltaic sands and glaciolacustrine sediments derived not solely from the melting ice in the north but also from extra-marginal rivers in the south. The Lowestoft Till Formation is not well preserved in the cliffs but includes lodgement till (Marly Drift till) and, most probably, associated meltwater deposits. Extensive glaciotectonism in the northern part of the area is shown to relate to oscillating ice that deposited the Cromer Diamicton and also partially to the ice sheet that deposited the Marly Drift till. It is suggested that during the Anglian Stage the present day northeast Norfolk coast was situated on the northwestern margin of an extensive glaciolacustrine basin. This basin was dammed by the Scandinavian ice sheet in the north and northeast. Because the grounding line of this ice sheet oscillated in space and time, part of the North Sea Drift diamictons were deposited directly by this ice. However, during ice retreat phases glaciolacustrine deposition comprised waterlain diamicton, sands and fines. When the Scandinavian ice sheet was situated in northernmost Norfolk, the British ice sheet (responsible for depositing the Marly Drift facies) entered the area from the west. This ice sheet partially deformed the North Sea Drift Formation sediments in the northern part of the area but not in the south, where the British ice sheet apparently terminated in water. The interplay of these two ice sheets on the northern and western margins of the glacial lake is thought to be the major determining factor for the accumulation of thick glacial deposits in this area during the Anglian glaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号