首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The CO2CRC Otway Project is the first demonstration scale project for geosequestration of CO2 in Australia. The storage site is located in the depleted Waarre reservoir of the Naylor gas field contained within a single fault block, in the onshore Otway Basin of Victoria. During 2009, approximately 65,000 tonnes of a mixture of CO2 and CH4 (∼80%/20%) was injected into the reservoir, accumulating at the top of the structure.To fully understand the pressure response of a depleted reservoir to CO2 injection all of the mechanisms that may impact the reservoir pressure, prior to injection, must be identified. In the case of the Otway Project there were five possible mechanisms with potential for impacting the Naylor Field pressure. These are (1) the rate of recovery due to gas production from the Naylor Field; (2) depletion from the nearby Boggy Creek CO2 production field; (3) depletion from the nearby Buttress CO2 Field, the source of the CO2 for injection into the Naylor Field; (4) depletion from the regional Waarre Formation reservoir which has been producing gas (and water) since 1986; and (5) hydraulic potentiometric disequilibrium via connection to other active aquifers.These mechanisms were examined through a regional conceptual hydrodynamic model as part of the pre-injection site characterisation. The reservoir pressure measured at the Naylor-1 well, prior to production, was lower than predicted by the hydrodynamic model. Examination of regional drawdown demonstrated that the reservoir is experiencing pressure decline which could have extended to the Naylor Field at this time.Ongoing monitoring of the Naylor-1 well, prior to injection, showed the depleted reservoir recovering faster than predicted by the reservoir simulation model matched to the production history. Connecting the target fault block to the regional aquifer using a dual aquifer model supported by the hydrodynamic model significantly improved the predicted recovery of the depleted reservoir.  相似文献   

2.
This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.  相似文献   

3.
Cap-rock seals can be divided genetically into those that fail by capillary leakage (membrane seals) and those whose capillary entry pressures are so high that seal failure preferentially occurs by fracturing and/or wedging open of faults (hydraulic seals). A given membrane seal can trap a larger oil column than gas column at shallow depths, but below a critical depth (interval), gas is more easily sealed than oil. This critical depth increases with lower API gravity, lower oil GOR and overpressured conditions (for the gas phase). These observations arise from a series of modelling studies of membrane sealing and can be conveniently represented using pressure/ depth (P/D) profiles through sealed hydrocarbon columns. P/D diagrams have been applied to the more complex situation of the membrane sealing of a gas cap underlain by an oil rim; at seal capacity, such a two-phase column will be always greater than if only oil or gas occurs below the seal.These conclusions contrast with those for hydraulic seals where the seal capacity to oil always exceeds that for gas. Moreover, a trapped two-phase column, at hydraulic seal capacity will be less than the maximum-allowed oil-only column, but more than the maximum gas-only column. Unlike membrane seals, hydraulic seal capacity should be directly related to cap-rock thickness, in addition to the magnitude of the minimum effective stress in the sealing layer and the degree of overpressure development in the sequence as a whole.Fault-related seals are effectively analogous to membrane cap-rocks which have been tilted to the angle of the fault plane. Consequently, all of the above conclusions derived for membrane cap-rocks apply to both sealing faults sensu stricto (fault plane itself seals) and juxtaposition faults (hydrocarbon trapped laterally against a juxtaposed sealing unit). The maximum-allowed two-phase column trapped by a sealing fault is greater than for equivalent oil-only and gas-only columns, but less than that predicted for a horizontal membrane cap-rock under similar conditions. Where a two-phase column is present on both sides of a sealing fault (which is at two-phase seal capacity), a deeper oil/water contact (OWC) in one fault block is associated with a deeper gas/oil contact (GOC) compared with the adjacent fault block. If the fault seal is discontinuous in the gas leg, however, the deeper OWC is accompanied by a shallower GOC, whereas a break in the fault seal in the oil leg results in a common OWC in both fault blocks, even though separate GOC's exist. Schematic P/D profiles are provided for each of the above situations from which a series of fundamental equations governing single- and two-phase cap-rock and fault seal capacities can be derived. These relationships may have significant implications for exploration prospect appraisal exercises where more meaningful estimates of differential seal capacities can be made.The membrane sealing theory developed herein assumes that all reservoirs and seals are water-wet and no hydrodynamic flow exists. The conclusions on membrane seal capacity place constraints on the migration efficiency of gas along low-permeabiligy paths at depth where fracturing, wedging open of faults and/or diffusion process may be more important. Contrary to previous assertions, it is speculated that leakage of hydrocarbons through membrane seals occurs in distinct pulses such that the seal is at or near the theoretically calculated seal capacity, once this has been initially attained.Finally, the developed seal theory and P/D profile concepts are applied to a series of development geological problems including the effects of differential depletion, and degree of aquifer support, on sealing fault leakage, and the evaluation of barriers to vertical cross-flow using RFT profiles through depleted reservoirs. It is shown that imbibition processes and dynamic effects related to active cross-flow across such barriers often preclude quantitative analysis and solution of these problems for which simulation studies are usually required.  相似文献   

4.
It is not clear whether global warming will favour or reduce global ocean phytoplankton productivity in coastal areas. Moreover, the relative contributions made by natural and/or anthropogenic factors to possible changes in phytoplankton productivity are not clear. As the relationship between primary production and alongshore wind forcing is well established for the Eastern Boundary Current (EBC) ecosystems, our aim is to determine whether the changes experienced over the last five decades (1958–2007) in atmospheric CO2 and solar activity have been able to affect the wind regime and water column stability in the most biologically productive upwelling areas of California, Canary, Humboldt and Benguela. We approached the work by statistically studying the effect of solar activity and atmospheric CO2 on surface alongshore wind stress and on water column stability. There was an increasing trend in wind stress and water column stability in all the upwelling areas over the period studied (with the single exception of stability in the California EBC system). The analysis of detrended series evidenced significant relationships between atmospheric CO2 concentration and wind stress and water column stability in the coastal upwelling areas investigated. In addition, wind stress and stability data were found to be consistent, with negative linear relationships between wind stress and CO2 in most of the sites in the Benguela, Canary and Humboldt regions associated, as expected, to positive relationships when water column stability is used as regressand. The results of the present study suggest that greenhouse gas forcing, independent of its well known general increasing trend, was able to decrease wind stress intensity and increase water column stability for the period 1958 to present in most of the sites of the four Eastern Boundary Ecosystems studied, with the one exception of the California region. Conversely, the impact of solar activity appeared to be quite low compared to the greenhouse gas forcing.  相似文献   

5.
The first exploratory well, the ZS1C well, with 158,545 m3 daily gas production was discovered in 6861–6944 m deep strata of the Cambrian gypsolyte layer of the Tarim Basin, China in 2014. The discovery opens a new target for the Cambrian-reservoired oil and gas exploration, and directly leads to large-scale oil and gas exploration of the deep-reservoired Cambrian oil and gas fields in the Basin. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and a comprehensive two-dimensional gas chromatography–flame ionization detector revealed the presence of abundant adamantane compounds, 2-thiaadamantanes and 2-thiadiamantanes, and a large amount of sulfur-containing compounds in the condensate oil. The formation of organic sulfur-containing compounds, such as 2-thiaadamantanes, is an indication of sulfur incorporation from the gypsum in the stratum into oil and gas in the course of TSR. This reservoir has apparently suffered severe TSR alteration because (1) High content of H2S, (2) H2S sulfur isotopes, (3) CO2 carbon isotopes, and others abundant data to support this findings. Similar sulfur isotopic composition of H2S, oil condensate and the gypsum in the Cambrian strata indicate that the produced condensate is experienced TSR alteration. Therefore, the deep-accumulated Cambrian oil reservoir has experienced severe TSR alteration, and accumulated natural gas and condensate contains high sulfur content.  相似文献   

6.
Coal-fired power stations in Collie, Western Australia emit 10 million tonnes of CO2 per year. This study assesses the potential opportunities of geological storage of CO2 both within the Collie Basin and the onshore part of the adjacent Southern Perth Basin of Western Australia within 50 km of Collie town site through a desktop evaluation of existing data. The aquifers and coal formations within both basins have been evaluated for their suitability for storage based on geological, geographical and environmental criteria related to storage capacity, injectivity, proximity to sources of CO2, location of other natural resources and containment security. The study has concluded that there is limited scope for large-scale storage of CO2 within the Collie Basin. In addition the potential for storage within coals of either basin is not a viable solution. This assessment is based on published criteria for CO2 storage in sedimentary basins and coal-bearing formations.  相似文献   

7.
Carbon dioxide flux techniques performed during GasEx-98   总被引:2,自引:0,他引:2  
A comprehensive study of air–sea interactions focused on improving the quantification of CO2 fluxes and gas transfer velocities was performed within a large open ocean CO2 sink region in the North Atlantic. This study, GasEx-98, included shipboard measurements of direct covariance CO2 fluxes, atmospheric CO2 profiles, atmospheric DMS profiles, water column mass balances of CO2, and measurements of deliberate SF63He tracers, along with air–sea momentum, heat, and water vapor fluxes. The large air–sea differences in partial pressure of CO2 caused by a springtime algal bloom provided high signals for accurate CO2 flux measurements. Measurements were performed over a wind speed range of 1–16 m s−1 during the three-week process study. This first comparison between the novel air-side and more conventional water column measurements of air–sea gas transfer show a general agreement between independent air–sea gas flux techniques. These new advances in open ocean air–sea gas flux measurements demonstrate the progress in the ability to quantify air–sea CO2 fluxes on short time scales. This capability will help improve the understanding of processes controlling the air–sea fluxes, which in turn will improve our ability to make regional and global CO2 flux estimates.  相似文献   

8.
Annual mean fluxes of CO2 and oxygen across the sea surface are estimated with the use of numerical modeling for several regions located in the Gulf Stream and Kuroshio zones. The present-day climatic conditions and the climatic conditions expected in the middle and at the end of the 21st century are considered. Specific features of gas exchange under a strong wind that are associated with gas exchange by bubbles and with changes in the air-water difference of the gas concentrations were taken into account in the calculations. The estimates obtained differ substantially from the results based on the traditional approach, which disregards the above features. A considerable increase in the absorption of CO2 by the ocean, which is mainly caused by the continuing increase in the CO2 concentration in the air during its small changes in the ocean, is expected in the 21st century. At the same time, no trends are revealed in the annual mean fluxes of oxygen across the ocean surface. The conclusion is made that, in calculations of CO2 absorption by the world ocean, it is necessary to take into account both specific features of gas transfer under a strong wind and an increase in the atmospheric concentration of CO2.  相似文献   

9.
Felice Arena  Diego Pavone   《Ocean Modelling》2009,26(3-4):217-225
This paper deals with the long-term modelling of high sea waves. The solution is given for the return period of sea storms during which an arbitrary chosen number of waves, with crest-to-trough heights exceeding a fixed threshold, occur. This return period is derived starting from the Equivalent Triangular Storm (ETS) model, which associates a triangle to each actual storm and thus represents a significant wave height time series at a fixed location by means of a sequence of triangular storms. The short-term statistics is then applied to investigate the occurrence of large crest-to-trough wave heights during a given storm. Finally, by combining the statistical distribution of significant wave heights, the ETS model and the short-term wave statistics, the solution is given for the return periods RN and RN of a sea storm in which N or at least N waves higher than a fixed threshold occur. The values of RN are then calculated, starting from data of two buoys moored in the Pacific Ocean and in the Mediterranean Sea.  相似文献   

10.
In petroleum industry, the difference between pore pressure (Pp) and minimum horizontal stress Sh (termed the seal or retention capacity) is of major consideration because it is often assumed to represent how close a system is to hydraulic failure and thus the maximum hydrocarbon column height that can be maintained. While Sh and Pp are often considered to be independent parameters, several studies in the last decade have demonstrated that Sh and Pp are in fact coupled. However, the nature of this coupling relationship remains poorly understood. In this paper, we explore the influences of the spatial pore pressure distribution on Sh/Pp coupling and then on failure pressure predictions and trap integrity evaluation. With analytical models, we predict the fluid pressure sustainable within a reservoir before failure of its overpressured shale cover. We verify our analytical predictions with experiments involving analogue materials and fluids. We show that hydraulic fracturing and seal breach occur for fluid pressure greater than it would be expected from conventional retention capacity. This can be explained by the impact of the fluid overpressure field in the overburden and the pressure diffusion around the reservoir on the principal stresses. We calculate that supralithostatic pressure could locally be reached in overpressured covers. We also define the retention capacity of a cover (RC) surrounding a fluid source or reservoir as the difference between the failure pressure and the fluid overpressure prevailing in shale at the same depth. In response to a localized fluid pressure rise, we show that the retention capacity does not only depend on the pore fluid overpressure of the overburden but also on the tensile strength of the cover, its Poisson’s ratio, and the depth and width of the fluid source.  相似文献   

11.
The geological storage of carbon dioxide (CO2) offers notable potential, as part of larger carbon dioxide capture and storage (CCS) processes, to be a significant climate change mitigation technology. This paper challenges the argument often put forward that, due to the greater distances from centres of population, it will be ‘easier’ to garner public and stakeholder support for offshore CO2 storage than onshore. Based on the results of research interviews carried out with stakeholders and informed publics in Scotland, challenges for public and stakeholder acceptance of sub-seabed CO2 storage that may require further policy attention are identified. Whilst existing policy for sub-seabed CO2 storage is cognisant of the need for societal engagement, it may be the case that these regulations may need further reinforcement to ensure future developments are able to address social acceptability issues as fully as possible. The value of taking into account social as well as physical characteristics at the site selection phase, the need for mechanisms to take seriously stakeholder conceptions of uncertainty, and the importance of extending social engagement beyond risk communication are discussed.  相似文献   

12.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation.  相似文献   

13.
Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2CH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.  相似文献   

14.
‘Offshore CO2 storage’ refers to the injection of liquefied CO2 into deep geological formations beneath the seabed (e.g. depleted oil and gas reservoirs, and saline aquifers) for the purpose of storing it there on a permanent basis. The storage in this manner of captured CO2 emissions from industrial installations and power plants has attracted considerable scientific and technical interest as a potential mitigation response to climate change. A key issue facing policymakers in several countries is how to reconcile policy commitments to develop offshore CO2 storage with other competing – and potentially conflicting – uses of the marine environment. With a view to informing policy responses to this issue, this paper presents a case study of legal and policy frameworks concerning offshore CO2 storage in United Kingdom. The paper maps key design features of the United Kingdom׳s framework for marine permitting and planning, appraising the extent to which they enable orderly development of offshore CO2 storage in a manner consistent with relevant high-level policy objectives.  相似文献   

15.
Defining the 3D geometry and internal architecture of reservoirs is important for prediction of hydrocarbon volumes, petroleum production and storage potential. Many reservoirs contain thin shale layers that are below seismic resolution, which act as impermeable and semi-permeable layers within a reservoir. Predicting the storage volume of a reservoir with thin shale layers from conventional seismic data is an issue due to limited seismic resolution. Further, gas chimneys indicative of gas migration pathways through thin shale layers, are not easily defined by conventional seismic data. Additional information, such as borehole data, can be used to aid mapping of shale layers, but making lateral predictions from 1D borehole data has high uncertainty. This paper presents an integrated workflow for quantitative seismic interpretation of thin shale layers and gas chimneys in the Utsira Formation of the Sleipner reservoir. The workflow combines the use of attribute and spectral analysis to add resolution to conventional seismic amplitude data. Detailed interpretation of these analyses reveals the reservoirs internal thin shale architecture, and the presence of gas chimneys. The comprehensive interpretation of the reservoirs internal structure is used to calculate a new reservoir storage volume. This is done based on the distribution of sand and interpreted shale layers within the study area, for this active CO2 storage site.  相似文献   

16.
The effect of shale composition and fabric upon pore structure and CH4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB). Devonian–Mississippian (D–M) and Jurassic shales have complex, heterogeneous pore volume distributions as identified by low pressure CO2 and N2 sorption, and high pressure Hg porosimetry. Thermally mature D–M shales (1.6–2.5% VRo) have Dubinin–Radushkevich (D–R) CO2 micropore volumes ranging between 0.3 and 1.2 cc/100 g and N2 BET surface areas of 5–31 m2/g. Jurassic shales, which are invariably of lower thermal maturity ranging from 0.9 to 1.3% VRo, than D–M shales have smaller D–R CO2 micropore volumes and N2 BET surface areas, typically in the range of 0.23–0.63 cc/100 g (CO2) and 1–9 m2/g (N2).  相似文献   

17.
An experimental study was carried out to determine the effects of a coastal forest on tsunami run-up heights. The beach was built as a natural sandy beach at laboratory scale. The coastal forest model was constructed using artificial trees (FM–I) and cylindrical timber sticks (FM–II). Artificial trees were placed on a 1:5 slope in three different layouts: rectilinear, staggered, and dense rectilinear. It was shown that in the case when the trees were placed in the dense rectilinear pattern and close to the still water level (SWL), the run-up height was reduced by approximately 45% compared with the case without trees. After evaluation of the experimental results, the parameters that affect the run-up height were determined. These parameters were written as a dimensionless group using Buckingham's Pi theorem. An extensive regression analysis was carried out and equations proposed. Furthermore, all experiments were repeated with a slope of 1:3.5 to verify the proposed equations. The experimental results were compared with the results of the proposed equations, and it was shown a good agreement between the results.  相似文献   

18.
A new deep-sea laser Raman spectrometer (DORISS—Deep Ocean Raman In Situ Spectrometer) is used to observe the preferential dissolution of CO2 into seawater from a 50%–50% CO2–N2 gas mixture in a set of experiments that test a proposed method of CO2 sequestration in the deep ocean. In a first set of experiments performed at 300 m depth, an open-bottomed 1000 cm3 cube was used to contain the gas mixture; and in a second set of experiments a 2.5 cm3 funnel was used to hold a bubble of the gas mixture in front of the sampling optic. By observing the changing ratios of the CO2 and N2 Raman bands we were able to determine the gas flux and the mass transfer coefficient at 300 m depth and compare them to theoretical calculations for air–sea gas exchange. Although each experiment had a different configuration, comparable results were obtained. As expected, the ratio of CO2 to N2 drops off at an exponential rate as CO2 is preferentially dissolved in seawater. In fitting the data with theoretical gas flux calculations, the boundary layer thickness was determined to be  42 μm for the gas cube, and  165 μm for the gas funnel reflecting different boundary layer turbulence. The mass transfer coefficients for CO2 are kL = 2.82 × 10− 5 m/s for the gas cube experiment, and kL = 7.98 × 10− 6 m/s for the gas funnel experiment.  相似文献   

19.
The Coal Oil Point seep field located offshore Santa Barbara, CA, consists of dozens of named seeps, including a peripheral ~200 m2 area known as Brian Seep, located in 10 m water depth. A single comprehensive survey of gas flux at Brian Seep yielded a methane release rate of ~450 moles of CH4 per day, originating from 68 persistent gas vents and 23 intermittent vents, with gas flux among persistent vents displaying a log normal frequency distribution. A subsequent series of 33 repeat surveys conducted over a period of 6 months tracked eight persistent vents, and revealed substantial temporal variability in gas venting, with flux from each individual vent varying by more than a factor of 4. During wintertime surveys sediment was largely absent from the site, and carbonate concretions were exposed at the seafloor. The presence of the carbonates was unexpected, as the thermogenic seep gas contains 6.7% CO2, which should act to dissolve carbonates. The average δ13C of the carbonates was ?29.2?±?2.8‰ VPDB, compared to a range of ?1.0 to +7.8‰ for CO2 in the seep gas, indicating that CO2 from the seep gas is quantitatively not as important as 13C-depleted bicarbonate derived from methane oxidation. Methane, with a δ13C of approximately ?43‰, is oxidized and the resulting inorganic carbon precipitates as high-magnesium calcite and other carbonate minerals. This finding is supported by 13C-depleted biomarkers typically associated with anaerobic methanotrophic archaea and their bacterial syntrophic partners in the carbonates (lipid biomarker δ13C ranged from ?84 to ?25‰). The inconsistency in δ13C between the carbonates and the seeping CO2 was resolved by discovering pockets of gas trapped near the base of the sediment column with δ13C-CO2 values ranging from ?26.9 to ?11.6‰. A mechanism of carbonate formation is proposed in which carbonates form near the sediment–bedrock interface during times of sufficient sediment coverage, in which anaerobic oxidation of methane is favored. Precipitation occurs at a sufficient distance from active venting for the molecular and isotopic composition of seep gas to be masked by the generation of carbonate alkalinity from anaerobic methane oxidation.
Figure
Processes modulating carbonate formation at Brian Seep (California) during times of high and low sediment burden  相似文献   

20.
A numerical model based on a wind-wave energy transport formulation of Toba is developed to generate hindcast wave height data for the equatorial and the north Indian Ocean, which is otherwise a data-sparse region. The intercomparison between model-predicted wave heights for three years (1987–1989) obtained utilising analysed surface wind fields' data, and model grid averaged GEOSAT Altimeter significant wave height data showed moderate match, particularly for HS greater than 1 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号