首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal convection in the mantle is caused by the heat transported upwards from the core and by the heat produced by the internal radioactive sources. According to the data on the heat transfer by the mantle plumes and geochemical evidence, only 20% of the total heat of the Earth is supplied to the mantle from the core, whereas most of the heat is generated by the internal sources. Along with the models that correctly allow for the internal heat sources, there are also many publications (including monographs) on the models of mantle convection that completely ignore the internal heating or the heat flux from below. In this study, we analyze to what extent these approximations could be correct. The analytical distributions of temperature and heat flux in the case of internal heating without convection and the results of the numerical modeling for convection with different intensity are presented. It is shown that the structure of thermal convection is governed by the distribution of the heat flux in the mantle but not by the heat balance, as it is typically implicitly assumed in most works. Heat production by the internal sources causes the growth of the heat flux as a function of radius. However, in the spherical mantle of the Earth, the heat flux decreases with radius due to the geometry. It turned out that with the parameters of the present Earth, both these effects compensate each other to a considerable extent, and the resulting heat flux turns out to be nearly constant as a function of radius. Since the structure of the convective flows in the mantle is determined by the distributions of heat flux and total heat flux, in the Cartesian models of the mantle convection the effective contribution of internal heating is small, and ignoring the heat flux from the core significantly distorts the structure of the convective currents and temperature distributions in the mantle.  相似文献   

2.
Extensive use of empirical heat flow/age relations in the field of thermal studies indicates that the basic concept of a relation between heat flow and age is deeply entrenched. The idea of a thermal time constant and thermal thickness for the lithosphere depends on the validity of a heat flow/age relation. Several thermal and thermo-mechanical lithospheric models are constrained by a heat flow/age relation, a corrected heat flow/age relation, or a reduced heat flow/age relation. The theory of plate tectonics provides a physical basis for a heat flow/age relation for the oceans. Reliable heat flow measurements from well-sedimented areas of the oceans are known to support it. On the contrary, the theory of plate tectonics does not support an age relation for the continents, which is not well realized. It is pointed out that according to the theory of plate tectonics, a distinct heat flow profile should characterize a Cenozoic/Mesozoic orogenic belt over the continents, and a variety of profiles could be expected on account of several possible interactions at convergent plate boundaries. A specific characteristic heat flow value corresponding to a particular age loses meaning, and therefore a heat flow/age relation (or curve) becomes conceptually invalid. Presently available continental heat flow data, statistically analysed in a proper manner, do not (as they should not) support an age relation. Attempts at correcting age-dependent heat flow means for crustal radiogenic heat to obtain an age relation for mantle heat flow do not yield meaningful results.  相似文献   

3.
东海及琉球沟弧盆系的海底热流测量与热流分布   总被引:8,自引:3,他引:8  
利用钻井资料获得了东海陆架地区15个热流值,分析了海底热流测量的误差来源及数据精度,对东海及琉球沟弧盆系的热流值进行了分类整理,将海底热流分为可信热流值、较可信热流值和参考热流值,本文使用了前两类热流数据,共得305个,对研究区的热流站位进行了分析,发现热流测站分布很不均匀,冲绳海槽几个高热流异常区的热流测站总数占全部东海热流测站的一半多,仍有相当一些构造单元热流站住很少或者几乎没有热流值,总体上,研究区的热流分布明显地和沟弧盆系的构造特征相吻合,呈现北东向条带状分布,东海陆架为正常热流值区,冲绳海槽为高热流异常区,琉球群岛为正常热流值区,琉球海沟和菲律宾海都为低热流异常值区,根据热流推测冲绳海槽下存在深部热物质上拱,琉球海沟垭口之下存在海洋板块的俯冲,本研究区自东向西初步表现出长波长热流振荡现象,但由于测量数据稀少,目前还不能对此作更进一步的研究。  相似文献   

4.
人为热源对城市边界层结构影响的数值模拟研究   总被引:30,自引:1,他引:30       下载免费PDF全文
用南京大学多尺度模式系统在不同区域进行了多种人为热源引入方案的研究,结果表明:考虑时空变化的人为热源按比例分别引入到地表能量平衡方程和大气热量守恒方程是将人为热源引入模式的最优方案.人为热通量密度变化的敏感性试验结果发现:人为热源的存在对城市热岛的生成有重要作用.计算结果表明,南京现有的人为热源排放量对该地区的城市热岛贡献率约为296%,若人为热通量密度在现有量值的基础上增大1倍,则其热岛贡献率可达429%;此外,人为热的排放对清晨城市边界层逆温结构有一定程度的破坏作用,能明显升高夜间近地层气温达05~10℃,并能使白天湍流活动的影响范围增大,混合层高度抬高,使夜间城市热岛环流的影响范围扩大.  相似文献   

5.
海洋热流数据是开展海洋地球动力学研究和油气资源评价的基础数据.为深入认识琼东南盆地的地热特征,本文首先利用耦合沉积作用与岩石圈张裂过程的数值模型分析了张裂型盆地主要地热参数的垂向变化特征;并通过钻孔资料的详细分析,获得了琼东南盆地44口钻孔的热流数据;结合海底地热探针获取的热流数据,对琼东南盆地地热特征及其主要影响因素进行了简要分析.结果表明:沉积作用的热披覆效应对表层热流有较明显的抑制作用,由于沉积物生热效应与披覆效应的共同作用,同一钻孔处海底表层热流与钻孔深度3000~4000m处热流或与海底间的平均热流差异很小,可以一起用于分析琼东南盆地的热流分布特征;莺歌海组、乐东组热导率随深度变化小于黄流组及其下地层热导率的变化,钻孔沉积层平均热导率约为1.7 W·(m·K)-1,钻孔地层生热率一般低于2.5μW·m-3,平均生热率为1.34μW·m-3,平均地温梯度主要介于30~45℃/km,热流介于50~99mW·m-2,陆架区热流主要集中于60~70mW·m-2,深水区钻孔具有较高的地温梯度和热流值;从北部陆架与上陆坡区往中央坳陷带,热流值从50~70mW·m-2,增高为65~85mW·m-2,并且往东有升高趋势,在盆地东部宝岛凹陷、长昌凹陷与西沙海槽北部斜坡带构成一条热流值高于85mW·m-2的高热流带.进一步分析认为,琼东南盆地现今热流分布特征是深部热异常、强烈减薄岩石圈的裂后冷却作用、晚期岩浆热事件、地壳与沉积层的生热贡献以及沉积作用的热披覆效应等多种主要因素综合作用的结果.  相似文献   

6.
In order to discuss the values and daily variation characteristics of heat storage fluxes in a tropical seasonal rain forest in Xishuangbanna, the sensible and latent heat storage flux within air column, canopy heat storage flux, energy storage by photosynthesis and ground heat storage above the soil heat flux plate, as well as the ratios of these heat storage fluxes to the net radiation in the cool-dry, hot-dry and rainy season were compared and analyzed based on the observation data of carbon fluxes, meteorological factors and biomass within this tropical seasonal rain forest from January 2003 to December 2004. The findings showed that heat storage terms ranged significantly in the daytime and weakly in the nighttime, and the absolute values of sensible and latent heat storage fluxes were obviously greater than other heat storage terms in all seasons. In addition, the absolute values of total heat storage fluxes reached the peak in the hot-dry season, then were higher in the rainy season, and reached the minimum in the cool-dry season. The ratios of heat storage fluxes to net radiation generally decreased with time in the daytime, moreover, the sensible and latent heat storage dominated a considerable fraction of net radiation, while other heat storage contents occupied a smaller fraction of the net radiation and the peak value was not above 3.5%. In the daytime, the ratios of the total heat storage to net radiation were greater and differences in these ratios were distinct among seasons before 12:00, and then they became lower and differences were small among seasons after 12:00. The energy closure was improved when the storage terms were considered in the energy balance, which indicated that heat storage terms should not been neglected. The energy closure of tropical seasonal rain forest was not very well due to effects of many factors. The results would help us to further understand energy transfer and mass exchange between tropical forest and atmosphere. Moreover, they would supply a research basis for studying energy closure at other places.  相似文献   

7.
Monthly, multi-annual mean heat budgets are calculated for waters overlying the Texas-Louisiana shelf. Heat storage rates are calculated on the basis of a volumetric temperature-salinity census; unpublished data from Bunker are consulted to determine surface heat exchanges. Monthly heat flux divergences, calculated as residuals in the heat budget equation, show divergence of heat during the months of June and July, the upwelling season for much of the Texas-Louisiana coast, and convergence of heat during the rest of the year when winds conducive to downwelling prevail.  相似文献   

8.
Recent research has demonstrated the use of in‐well heat tracer tests monitored by a fiber optic distributed temperature sensing (DTS) system to characterize borehole flow conditions in open bedrock boreholes. However, the accuracy of borehole flow rates determined from in‐well heat tracer tests has not been evaluated. The purpose of the research presented here is to determine whether borehole flow rates obtained using DTS‐monitored in‐well heat tracer tests are reasonable, and to evaluate the range of flow rates measureable with this method. To accomplish this, borehole flow rates measured using in‐well heat tracer tests are compared to borehole flow rates measured in the same boreholes using an impeller or heat pulse flowmeter. A comparison of flow rates measured using in‐well heat tracer tests to flow rates measured with an impeller flowmeter under the same conditions showed good agreement. A comparison of in‐well heat tracer test flow rate measurements to previously‐collected heat pulse flowmeter measurements indicates that the heat tracer test results produced borehole flow rates and flow profiles similar to those measured with the heat pulse flowmeter. The results of this study indicate that borehole flow rates determined from DTS‐monitored in‐well heat tracer tests are reasonable estimates of actual borehole flow rates. In addition, the range of borehole flow rates measurable by in‐well heat tracer tests spans from less than 10?1 m/min to approximately 101 m/min, overlapping the ranges typically measurable with an impeller flowmeter or a heat pulse flowmeter, making in‐well heat tracer testing a versatile borehole flow logging tool.  相似文献   

9.
本文首次系统地收集整理了观测资料比较齐全、国内公开发表的热流数据167个,并对之进行了初步分析。这些数据的地理分布还很不均匀,热流值变化范围为25—245mWm-2,多种平均方法得到的结果表明,中国大陆区域代表性热流值范围为61—68mWm-2。作者所作的经纬度网格和条带统计还揭示,数据覆盖区内热流沿经、纬向的分布有明显的差异,纬向条带平均热流值看来具有波状起伏变化的规律。这一结果已经得到日本及其周围海域热流数据的初步印证,如果获得更广泛的证实,无疑具有深刻的地质和地球物理意义  相似文献   

10.
Thermal gradients have been calculated and heat flow estimates made for 34 petroleum exploration wells along four regional profiles crossing the Mesozoic-Cenozoic Beaufort-Mackenzie Basin of northern Canada. The geothermal gradients vary from 22 mKm–1 to 44 mKm–1. Four sets of possible thermal conductivity values were used to calculate a range of heat flow values for each well. Generally low heat flow is observed in wells within the deeper portions of the basin and higher heat flow values occur in wells along the Aklavik Arch Complex which forms the southeastern margin of the basin.The contribution to heat flow by heat generation below the Mesozoic-Cenozoic basin fill sediments has been considered. The heat flow contribution from sub-Mesozoic sedimentary strata and underlying basement is highest along the basin-bounding Aklavik Arch Complex. The decrease in heat flow from below the basin fill sediments toward the basin depocenter may be related to basinward crustal thinning and corresponding reductions in intra-crustal radiogenic heat production.  相似文献   

11.
渭河盆地岩石圈热结构与地热田热源机理   总被引:7,自引:2,他引:5       下载免费PDF全文
岩石圈热结构是盆地现今地温场研究的重要延伸和扩展,是了解大陆岩石圈构造变形及演化等大陆动力学问题的重要窗口,更是地热田热源机理研究的核心问题.本次工作,在系统分析渭河盆地现今地温场和水动力系统基础上,编制了渭河盆地大地热流分布等值线图;通过实测生热率等热物性参数,利用一维稳态热传导方程计算了研究区岩石圈热结构,并分析了渭河盆地岩石圈热结构特征和地热田热源机理.结果表明,渭河盆地现今大地热流值分布范围为62.5~80.2mW·m-2,平均为70.8±4.8mW·m-2,西部明显高于东部,西安坳陷最高,咸礼凸起次之;渭河断裂并不是控热断裂,其沟通作用引起的水热循环一定程度上影响了浅部热量再分配,对渭河盆地地温场并没有起到明显的控制作用.西安坳陷—咸礼凸起地壳热流介于32.2~37.5mW·m-2之间,平均为34.6mW·m-2;地幔热流分布范围为33.8~38.9mW·m-2,平均为36.0mW·m-2;地壳热流和地幔热流的总体变化趋势一致,西安坳陷高于咸礼凸起,分析认为西安坳陷沉积层厚度大于后者,且沉积层放射性生热率更大,是造成西安坳陷地壳热流高于咸礼凸起的原因,而西安坳陷相比咸礼凸起更高的地幔热流,表明西安坳陷深部活动性强于咸礼凸起.西安坳陷和咸礼凸起地壳/地幔热流比值相近,介于0.93~1.01之间,平均为0.96,"热"岩石圈厚度约为95~101km.渭河盆地岩石圈热结构特征与鄂尔多斯盆地在很大程度上具有相似性,暗示着二者具备相似的深部稳定性,这与渤海湾盆地为代表的中国东部中—新生代主动裂谷盆地岩石圈热结构特征截然不同,表明渭河盆地为被动伸展裂陷.从鄂尔多斯盆地、渭河盆地、山西裂谷到华北盆地,"热"岩石圈厚度的有序变化表明太平洋板块俯冲引起的地幔对流对华北地块深部动力学行为的影响主要发生在太行山以东,而太行山以西的鄂尔多斯盆地和渭河盆地则影响甚微,这种空间差异影响从侧面暗示着华北克拉通破坏过程的有序性.综合分析渭河盆地地质—地球物理资料认为,岩石圈表层伸展破裂、深部重力均衡调整进而引起软流圈被动上涌,其产生的相对高地幔热流的热传导和深大断裂沟通的水体热对流相互叠加作用,共同构成了渭河盆地中—低温地热田的热源机理.  相似文献   

12.
沉积层放射性生热的热流贡献(沉积层热流)是沉积盆地大地热流的重要组成部分,能够有效促进中国西部“冷”盆深层-超深层烃源岩的增温和热演化.本文利用不同的自然伽马(GR)-生热率(A)经验关系式分别计算了准噶尔盆地不同构造单元16口钻孔共6120个沉积层生热率,通过与实测生热率的统计对比,确定了适用于研究区的GR-A经验关系,建立了准噶尔盆地地层生热率柱,据此计算了研究区沉积层热流贡献,并以盆参2井为例定量分析了沉积层热流的增温效应.结果表明,准噶尔盆地沉积层平均生热率为1.179±0.339 μW·m-3,总体上随着时代变老,沉积层生热率呈现出递减趋势.准噶尔盆地沉积层热流平均为7.9±4.9 mW·m-2,约占地壳热流的29.2%和大地热流的19.6%,区域上与盆地沉积层厚度大体一致,表现为中央坳陷最高,北天山山前冲断带变化较大,陆梁隆起和西部隆起次之,东部隆起和乌伦古坳陷最低.沉积层热流能够有效增高深层—超深层烃源层受热温度,促进有机质热演化,如在考虑和忽略沉积层生热的两种情况下计算的盆参2井下侏罗统三工河组烃源岩底部(5300 m)温度差异最大为7.3 ℃,这显然对于地温梯度小、主体油气藏埋深大的准噶尔盆地油气资源评价和勘探目标优选具有重要意义.  相似文献   

13.
准噶尔盆地大地热流特征与岩石圈热结构   总被引:15,自引:6,他引:9       下载免费PDF全文
沉积盆地现今大地热流和岩石圈热结构特征是岩石圈构造-热演化过程的综合反映和盆地热史恢复的约束条件,对盆地动力学研究和油气资源评价具有重要意义.作者系统分析了准噶尔盆地2000年以来新增的102口钻孔的系统测井温度和400余口钻孔的试油温度资料,采用光学扫描法测试了15口钻孔共187块代表性岩石热导率,首次建立了准噶尔盆地岩石热导率柱,新增了11个高质量的(A类)大地热流数据,分析了准噶尔盆地大地热流分布特征,并揭示了其岩石圈热结构.研究表明,准噶尔盆地现今地温梯度介于 11.6~27.6℃/km,平均21.3±3.7℃/km,大地热流介于23.4~56.1 mW/m2,平均42.5±7.4 mW/m2,表现为低地温梯度、低大地热流的"冷"盆特征.准噶尔盆地大地热流与地温梯度分布规律基本一致,主要受控于基底的构造形态,东部隆起最高,陆梁隆起次之,乌伦古坳陷、中央坳陷和西部隆起较低,北天山山前坳陷最低.准噶尔盆地地壳热流介于18.8~26.0 mW/m2,地幔热流介于16.5~23.7 mW/m2,壳幔热流比值介于0.79~1.58,属于典型的"冷壳冷幔"型热结构.准噶尔盆地地幔热流值与莫霍面起伏一致,隆起区地幔热流高,坳陷区地幔热流低.  相似文献   

14.
Surface heat flows are calculated from elastic lithosphere thicknesses for the heavy cratered highlands of Mars, in terms of the fraction of the surface heat flow derived from crustal heat sources. Previous heat flow estimations for Mars used linear thermal gradients, which is equivalent to ignoring the existence of heat sources within the crust. We compute surface heat flows following a methodology that relates effective thickness and curvature of an elastic plate with the strength envelope of the lithosphere, and assuming crustal heat sources homogeneously distributed in a radioactive element-rich layer 20 or 60 km thick. The obtained results show that the surface heat flow increases with the proportion of heat sources within the crust, and with the decrease of both radioactive element-rich layer thickness and surface temperature. Also, the results permit us to calculate representative temperatures for the crust base, rock strength for the upper mantle, and lower and upper limits to the crustal magnetization depth and intensity, respectively. For Terra Cimmeria, an effective elastic thickness of 12 km implies between 30% and 80% of heat sources located within the crust. In this case the uppermost mantle would be weak at the time of loading, and temperatures in the lower crust cold enough to favor unrelaxed crustal thickness variations and to permit deep Curie depths in the highlands, as suggested by the observational evidence.  相似文献   

15.
辽河裂谷盆地地幔热流   总被引:12,自引:5,他引:12  
辽河盆地是一个在前中生代基底上发展起来的裂谷盆地,实测大地热流平均值为65mW/m2,变动于44-83mW/m2之间。在给出地壳结构模型并确定各岩层放射性生热率的基础上,采用“剥层”法从地表开始,自上而下,由浅及深地扣除各岩层所提供的热量,从而得出地幔热流值。结果表明,辽河裂谷盆地地幔热流为41mW/m2,占整个地表总热流量的63%。可见,本区热量大部分来自地幔。与世界上其它地质构造单元相比,辽河裂谷盆地无论地幔热流绝对值或其与地表热流之比值,都具有介于稳定地区和构造活动区之间的特点。作者认为,辽河裂谷盆地地幔热流的上述特点,乃是中、新生代以来本区长期地质历史发展的产物。  相似文献   

16.
随着南海北部陆坡天然气水合物勘探工作的深入开展,在南海北部陆坡天然气水合物勘探区典型的集中了钻孔、探针和BSR三种测量方式获得的热流数据.为了解海底热流不同测量方式的差异,以及南海北部陆坡水合物勘探区的热流特征,文章以SH-2和SH-5孔作为典型站位,分别介绍三种热流测量方法并对两个站位的不同类型热流进行对比分析,结果表明:(1)在SH-2孔处探针热流与钻孔热流基本一致,但在SH-5孔处探针热流明显低于钻孔热流;采用钻孔实测沉积物平均热导率计算的SH-2和SH-5两个站位处的BSR热流都与相应钻孔热流基本一致.(2)根据地震剖面及相邻位置探针热流特征分析,SH-5站位处探针热流明显偏低,可能是受到流体活动的影响.(3)相对SH-2孔,SH-5孔具有较高的地温梯度和热流特征,可能是SH-5钻孔未钻到水合物的重要原因,而晚期泥底辟侵入可能是造成SH-5孔具有较高的温度场并导致原本赋存的水合物分解的原因.  相似文献   

17.
Plumes rising from the core–mantle boundary (CMB) are often assumed to transport most, or all, of the heat conducted across the CMB. Here this assumption is explored using numerical convection models in idealized geometries that lead to a single plume under steady-state or near steady state conditions. Plume heat transport is calculated for different internal heating rates using two methods and compared to the CMB heat flux. For these conditions, it is found that the heat flux transported by plumes in the upper mantle is only a fraction of the core heat flux and, thus, core heat flow estimates derived from observed hotspots could be multiplied by a factor of several.  相似文献   

18.
The surface heat flow in the interior of Archean cratons is typically about 40 mW m−2 while that in Proterozoic and younger terrains surrounding them is generally considerably higher. The eighty-four heat flow observations from southern Africa provide an excellent example of this contrast in surface heat flow, showing a difference of some 25 mW m−2 between the Archean craton and younger peripheral units. We investigate two possible contributions to this contrast: (1) a shallow mechanism, essentially geochemical, comprising a difference in crustal heat production between the two terrains, and (2) a deeper mechanism, essentially geodynamical, arising from the existence of a lithospheric root beneath the Archean craton which diverts heat away from the craton into the thinner surrounding lithosphere. A finite element numerical model which explores the interplay between these two mechanisms suggests that a range of combinations of differences in crustal heat production and lithospheric thickness can lead to the contrast in surface heat flow observed in southern Africa. Additional constraints derived from seismological observations of cratonic roots, the correlation of surface heat flow and surface heat production, petrological estimates of the mean heat production in continental crust and constraints on upper mantle temperatures help narrow the range of acceptable models. Successful models suggest that a cratonic root beneath southern Africa extends to depths of 200–400 km. A root in this thickness range can divert enough heat to account for 50–100% of the observed contrast in surface heat flow, the remainder being due to a difference in crustal heat production between the craton and the surrounding mobile belts in the range of zero to 0.35 μW m−3.  相似文献   

19.
从红外遥感图像提取地下热信息的透热指数法   总被引:12,自引:1,他引:11       下载免费PDF全文
红外遥感影像主要反映的是地表温度。然而气象因素对地表温度的影响远大于来源于地下的地质因素 ,可能存在的地下热异常信号淹没在气象信息之中。如何从中提取地下热信息 ,成为一个关键问题。文中由热传导理论出发 ,根据地下热信号通过不同热扩散率材料传到地表时将产生较大时间差的特点 ,提出了提取地下热异常的新指标“透热指数”。通过对实验数据和遥感数据的试算 ,分析了使用“透热指数”法的条件及影响因素  相似文献   

20.
南海北部陆缘珠江口盆地岩石圈热结构   总被引:1,自引:0,他引:1       下载免费PDF全文
沉积盆地岩石圈热结构特征是岩石圈构造-热演化过程的综合反映和盆地热史恢复的约束条件,对盆地动力学研究和油气资源评价具有重要意义.由于海洋勘探难度大、勘探程度低,相对于大陆地区,边缘海盆地比较缺乏岩石圈热结构方面的研究.本文在收集整理珠江口盆地及邻区大地热流数据的基础上,补充收录了自2003年以来发表的新数据,绘制了研究区最新版的大地热流等值线图;基于中美合作双船地震剖面揭示的深部地壳结构计算了研究区的壳-幔热流、深部温度以及"热"岩石圈厚度.研究表明,珠江口盆地地壳热流介于18.7~28.6 mW·m-2,地幔热流介于36.9~91.4 mW·m-2,壳幔热流比值0.23~0.75;由陆架、陆坡至中央海盆,在地壳热流逐渐减小的情况下地表热流逐渐递增,说明地表热流分布主要受深部热作用控制;盆地"热"岩石圈厚度介于34.0~87.2 km,平均65.5 km,反映出显著拉张减薄的特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号