首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
~(40)Ar/~(39)Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock ~(40)Ar/~(39)Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit Si02 of 56.86-66.86 wt.%,K_2 O of 0.99-2.46 wt.% and MgO of 1.03-4.47 wt.%,with Mg# of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial ~(87)Sr/~(86)Sr ratios ranging from 0.7112 to 0.7149 and ε_(Nd)(t) values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt.  相似文献   

2.
<正>The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.  相似文献   

3.
Abstract: The Late Cretaceous Khabr–Marvast tectonized ophiolite is located in the middle part of the Nain–Baft ophiolite belt, at the south-western edge of the central Iranian microcontinent. Although all the volcanic rocks in the study area indicate subduction-related magmatism (e.g. high LILE (large ion lithophile elements) / HFSE (high field strenght elements) ratios and negative anomalies in Nb and Ta), geological and geochemical data clearly distinguish two distinct groups of volcanic rocks in the tectonized association: (1) group 1 is comprised of hyaloclastic breccias, basaltic pillow lavas, and andesite sheet flows. These rocks represent the Nain–Baft oceanic crust; and (2) group 2 is alkaline lavas from the top section of the ophiolite suite. These lavas show shoshonite affinity, but do not support the propensity of ophiolite.  相似文献   

4.
This paper presents the results of eco-geochemical research on black rock series enriched in metallic elements in Pingli County,Shaanxi Province,which lies at the northern margin of the Yangtze Platform.There is a suite of bone coal-bearing black carbonaceous rocks in the Cambrian Donghe Formation throughout the region.Soils in Pingli contain high metallic elements derived from the bone coal and carbonaceous rocks.Edible plants growing in the soils contain high Se,Cu and Mo.Two case studies are documented.One is a black shale area with bone coal and Se enrichment,and the other is a black shale area with bone coal mine and copper mineralization.Eco-geochemical effects of metallic element-rich black shales on plants are reported in this paper.  相似文献   

5.
The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane const  相似文献   

6.
The study area is a small part of the Sabzevar structural zone, and is confined between Semnan and Khorasan provinces. The oldest sedimentary rocks of this region are Middle Jurassic in age with horizons of calc-alkaline rhyolitic-rhyodacitic lavas in between. First alkaline basaltic lavas accompanied by diabasic dikes in this region appeared along with Early Cretaceous lime-stone. Late Cretaceous rocks are composed of volu-minous calc-alkaline rhyodacitic-rhyolitic and trachy-andesitic lavas and dikes, and basaltic dikes. With abundance pinkish-cream plagic limestone this has been overlain by Paleocene rocks.  相似文献   

7.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

8.
The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous “Red Sea type” ocean basin that was developed on the northern margin of the Tianshan Carboniferous-Permian rift system in northwestern China. The late Early Carboniferous Bayan Gol ophiolite suite was emplaced in an Early Carboniferous rift volcanosedimentary succession of shallow-marine to continental facies (Volcanics Unit). Ophiolitic rocks in the Bayan Gol area comprise ultramafic rocks, gabbros with associated plagiogranite veins, diorite, diabase, pillow basalts and massive lavas. The Early Carboniferous tiffing and the opening process of the North Tianshan ocean basin produced mafic magmas in composition of tholeiite and minor amounts of evolved magmas. Compositions of trace elements and Nd, Sr and Pb isotopes reveal the presence of two distinct mantle sources: (1) the Early Carboniferous rift mafic lavas from the Volcanics Unit were generated by a relatively low degree of partial melting of an asthenospheric OIB-type intraplate source; (2)younger (late Early Carboniferous, -324.8 Ma ago) mafic lavas from the Ophiolite Unit were formed in a relatively depleted MORB-like mantle source, located in the uppermost asthenosphere and then gradually mixed with melts from the asthenospheric OIB-like mantle. A slight interaction between asthenosphere-derived magmas and lithospheric mantle took place during ascent to the surface. Subsequently, the most depleted mafic lavas of the ophiolite assemblage were contaminated by upper-crustal components (seawater or carbonate crust).  相似文献   

9.
In the vicinity of Konya (Turkey),mafic,micro-porphyritic sub-volcanic rocks intrude into the Mesozoic units,which represents the only example of such a rock type in the region.40Ar/39Ar dating of two whole rock samples from the sub-volcanics gave ages of 13.72±0.13 and 12.40±0.11 Ma,suggesting temporal association to the Late Miocene-Pliocene high-K calc-alkaline volcanism in the region.The mineral chemistry and geochemical data permit us to classify the rocks as "minette" lamprophyres.They include diopside and phlogopite phenocrysts in a microcrystalline groundmass composed of sanidine,phlogopite,diopside and titano-magnetite.Segregation and ocelli-like globular structures occur commonly in the samples.In terms of major elements,the lamprophyres are calcalkaline,and potassic to ultrapotassic rocks.All the lamprophyres display strong enrichments in LILE (Rb,Ba,K,Sr),radiogenic elements (Th,U) and LREE (La,Ce) and prominent negative Nb,Ta,and Ti anomalies on primordial mantle-normalized trace element diagrams.Geochemical data suggest that the lamprophyres and high-K calc-alkaline rocks in the region derived from a subduction-modified lithospheric mantle source affected by different metasomatic events.Lamprophyric magmatism sourced phlogopite-bearing veins generated by sediment-related metasomatism via subduction,but high-K calc-alkaline magmas are possibly derived from a mantle source affected by fluid-rich metasomatism.  相似文献   

10.
<正>Eocene felsic porphyric rocks and the high-Mg potassic volcanic rocks(HMPR) occur along the Jinshajiang-Ailao Shan-Red River shear zone(JARSZ) in eastern Tibet.Compared with the HMPR,which are generally believed to be sourced from an enriched mantle,the felsic porphyric rocks show similar K_2O contents,enrichment in LREE and LILE,particularly radiogenic isotope(e.g.Sr and Nd) features much similar to the former,implying generation of the felsic porphyric rocks most likely related to the HMPR,although they both have clearly different major and trace element compositions. The close relationship in spatial-temporal distribution and similar Sr-Nd characteristics between the felsic porphyric rocks and HMPR in eastern Tibet indicate that both of them were possibly formed by a similar tectonic process(event).Combining the basic dikes in southern and eastern Tibet,we suggest that the break-off of north-dipping Neo-Tethyan slab in southern Tibet during 50-40 Ma,triggered formation of high-Mg potassic magma.This led to developing felsic porphyric magma production by partial melting of underplating HMPR in the lower crust,or fractionation crystallization of the high-Mg potassic magmas.The break-off of slab in the Eocene may also have contributed to the abundant ore-forming material related to earlier subduction events,resulting in formation of the porphyric deposits along JARSZ in eastern Tibet.  相似文献   

11.
The Karacadağ (Kulu-Konya) area is one of the main volcanic provinces in Central Anatolia. The Karacadağ volcanites are composed of large volumes of andesitic-dacitic lavas associated with pyroclastics and small volumes of alkali basalt, trachybasalt and trachyandesite lavas. Two groups of volcanic rocks can be distinguished: (1) calcalkaline rocks including andesites and dacites, and (2) alkaline rocks including basalts, trachybasalts and trachyandesites. 40Ar/39Ar ages show that the Karacadağ volcanites were erupted during Early Miocene (ca.18–19 Ma) and suggest that alkaline volcanites succeed shortly afterwards calcalkaline volcanites. Major oxides and trace elements plotted versus SiO2 suggest fractionation of hornblende, Fe–Ti oxide and apatite for calcalkaline volcanic rocks and olivine, clinopyroxene and Fe–Ti oxide for alkaline volcanic rocks in the magmatic evolution. The incompatible trace element patterns of the calcalkaline volcanites show enrichment of LILEs (Sr, K, Rb, Ba and Th) and negative HFSEs (Nb, Ta) anomalies suggesting an enriched lithospheric source by a subduction-related process. On the other hand, alkaline volcanites show enrichment of both LILEs and HFSEs suggesting an enriched lithospheric source by small volume melts from the asthenosphere. The rocks also have moderately fractionated REE patterns with (La/Lu)N ratios of 7–24 for calcalkaline and 6–17 for alkaline volcanites. Moreover, the volcanites have relatively low 87Sr/86Sr(t) ratios for between 0.703782 and 0.705129, and high εNd(t) values between +2.25 and +4.49. Generally, the Sr–Nd isotopic compositions of the rocks range from the mantle array to bulk earth. All of these observations and findings suggest that the calcalkaline volcanites were formed in a subduction modified orogenic setting, and the alkaline volcanites in a within-plate setting.  相似文献   

12.
New 40Ar/39Ar and published 14C ages constrain voluminous mafic volcanism of the Kamchatka back-arc to Miocene (3–6 Ma) and Late Pleistocene to Holocene (<1 Ma) times. Trace elements and isotopic compositions show that older rocks derived from a depleted mantle through subduction fluid-flux melting (>20%). Younger rocks form in a back arc by lower melting degrees involving enriched mantle components. The arc front and Central Kamchatka Depression are also underlain by plateau lavas and shield volcanoes of Late Pleistocene age. The focus of these voluminous eruptions thus migrated in time and may be the result of a high fluid flux in a setting where the Emperor seamount subducts and the slab steepens during rollback during terrain accretions. The northern termination of Holocene volcanism locates the edge of the subducting Pacific plate below Kamchatka, a “slab-edge-effect” is not observed in the back arc region.  相似文献   

13.
Ataúro is a key to understanding the late stage volcanic and subduction history of the Banda Arc to the north of Timor. A volcanic history of bi-modal subaqueous volcanism has been established and new whole rock and trace element geochemical data show two compositional groups, basaltic andesite and dacite–rhyolite. 40Ar/39Ar geochronology of hornblende from rhyo-dacitic lavas confirms that volcanism continued until 3.3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. Local scale landscape features of the eastern parts of Ataúro are strongly controlled by normal faults. The continuation of arc-related volcanism on Ataúro until at least 3.3 Ma suggests that subduction of Australian lithosphere continued until near this time. This data is consistent with findings from the earthquake record where the extent of the Wetar seismic gap to a depth of 350 km suggests slab breakoff, as a result of collision, commenced at ∼4 Ma, leading to subsequent regional uplift recorded in elevated terraces on Ataúro and neighbouring islands.  相似文献   

14.
In the western USA calcalkaline magmas were generated hundreds of kilometres from the nearest destructive plate margin, and in some areas during regional extension several Ma after the cessation of subduction. The Mogollon-Datil Volcanic Field (MDVF) in southern New Mexico was a centre of active magmatism in the mid- to late-Tertiary, and a detailed field, petrographic and geochemical study has been undertaken to evaluate the relations between extensional tectonics and calcalkaline magmatism in the period 30–20 Ma. The rocks comprise alkalic to high-K calcalkaline lavas, ranging from basalt to high silica andesitc. Most of the basaltic rocks have relatively low HFSE abundances, elevated 87Sr/86Sr and low 143Nd/144Nd, similar to many Tertiary basalts across the western USA, and they are inferred to have been derived from the continental mantle lithosphere. Two differentiation trends are recognised, with the older magmas having evolved to more calcalkaline compositions by magma mixing between alkalic basaltic andesites and silicic crustal melts, and the younger rocks having undergone 30–40% fractional crystallisation to more alkalic derivatives. The younger basalts also exhibit a shift to relatively higher HSFE abundances, with lower 87Sr/86Sr and higher 143Nd/144Nd, and these have been modelled as mixtures between an average post-5 Ma Basin and Range basalt and the older MDVF lithosphere-derived basalts. It is argued that the presence of subduction-related geochemical signatures and the development of calcalkaline andesites in the 30–20 Ma lavas from the MDVF are not related to the magmatic effects of Tertiary subduction. Rather, basic magmas were generated by partial melting of the lithospheric mantle which had been modified during a previous subduction event. Since these basalts were generated at the time of maximum extension in the upper crust it is inferred that magma generation was in response to lithospheric extension. The association of the 30–20 Ma calcalkaline andesites with the apparently anorogenic tectonism of late mid-Tertiary extension, is the result of crustal contamination, in that fractionated, mildly alkaline, basaltic andesite magmas were mixed with silicic crustal melts, generating hybrid andesite lavas with calcalkaline affinities.  相似文献   

15.
The mid‐Cretaceous Spences Bridge Group (SBG) comprises a series of basaltic to rhyolitic lavas and related volcaniclastic rocks (Pimainus Formation) overlain by a succession of mainly amygdaloidal andesites (Spius Formation) related to the closure of the Methow–Tyaughton basin and accretion of the Insular terrane in the North American Cordillera. Geochemical variation in the SBG is related primarily to metasomatic processes in the mantle wedge. Pimainus lavas include low‐ to high‐K, tholeiitic and calc‐alkaline types, and have isotopic compositions (εNd(100Ma) = + 5.2 to + 7.0, εSr(100Ma) = − 10 to − 20, 206Pb/204Pb = 18.82 to 18.91, 207Pb/204Pb = 15.55 to 15.60, 208Pb/204Pb = 38.24 to 38.43) between the ranges for primitive arcs and accreted terrane crust. Crustal sources are identified only for some low–medium K dacite and rhyolite compositions. The occurrence of intermediate compositions with high MgO contents (up to 6 wt%) and the presence of adakitic trace element features in medium–high K felsic lavas attests to metasomatism of the mantle wedge by slab melts during Pimainus volcanism. Spius lavas have comparable K2O and Pb isotopic compositions to the Pimainus, even higher MgO (up to 9.2 wt%), and display a mild intraplate character in having up to 0.6 wt% P2O5, 15 ppm Nb, and 240 ppm Zr. Spius Nd−Sr isotopic compositions (εNd(100Ma) = + 5.3 to + 6.9, εSr(100Ma) = − 14 to − 25) define an array extending from Pimainus to alkaline seamount compositions. The low εSr values, elevated high field strength element contents, and moderate silica contents suggest Spius volcanism was related to the introduction of small melt fractions from the asthenosphere into the mantle wedge which had previously generated Pimainus melts. The range of compositional types in the Pimainus Formation constrains tectonic scenarios to include an elevated slab thermal regime, likely from approach of an ocean ridge system toward the continental margin. Spius volcanism may have been generated by asthenospheric upwelling triggered by slab window development or slab‐hinge roll‐back on closure of the Methow–Tyaughton basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
《Lithos》2007,93(1-2):149-174
Strong compositional variations are observed in the late-Miocene to Quaternary volcanic rocks of the eastern Trans-Mexican Volcanic Belt. Geochemical and isotopic analyses of samples well constrained in age indicate an abrupt change in magma composition in the late-Miocene (∼ 7.5 Ma), when calc-alkaline, subduction-related magmatism was replaced by mafic, alkaline, OIB-like volcanism. Afterwards, volcanism migrated toward the trench and the erupted lavas showed increasing contributions of subduction components reflected in higher Th/Nb, La/Sm(n), Ba/Nb, and Ba/Th ratios. Lavas from volcanic fields located closer to the trench show clearer, although strongly variable, arc signatures as well as evidence of subducted sediment contributions. Farther from the trench, only lavas emplaced in late-Pliocene time appear to be slightly modified by subduction components, whereas the youngest Quaternary lavas can be regarded as intraplate lavas modified by crustal assimilation.The sudden change in magma composition in the late-Miocene is related to detachment of the subducting slab, which allowed the infiltration of enriched asthenospheric mantle into the mantle wedge. After detachment, the subducting plate started to increase its dip because of the loss of slab pull. This caused (1) the migration of the arc toward the trench, (2) convection of enriched asthenosphere into the mantle wedge, and (3) an increasing contribution of slab components to the melts, in a process that resulted in a highly heterogeneous source mantle. The variable contribution of subduction-related components to the magmas is controlled by the heterogeneous character of the source, the depth of the subducting plate, and the previous magmatic history of the areas.  相似文献   

17.
The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(87Sr/86Sr)_i value of 0.7129–0.7224, εNd(t) values of -9.3 to -7.0 and zircon εHf(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial 87Sr/86Sr ratios of 0.7101–0.7152 and εNd(t) values of -3.8 to -3.4 and zircon εHf(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.  相似文献   

18.
Volcanic rocks, mainly of intermediate composition, occupy several basins within the rift zone along which the Yangtze River flows in its lower reaches. Potassium‐argon (K‐Ar) age measurements on minerals and whole rock samples from lavas and syenitic intrusives in the Lujiang‐Tzungyang volcanic basin range from 131 to 123 m.y., and biotites from two lavas in the Nanjing‐Wuhu basin have measured ages of 127 and 130 m.y. Incremental heating experiments by the 40Ar/39Ar method on biotite from two volcanic rocks, one from each basin, yield simple age spectra with plateau ages of 129 to 130 m.y. These data provide evidence that the two biotites have remained undisturbed since crystallisation. The combined results show that volcanism was contemporaneous within the two basins in the Early Cretaceous. Vol‐canism in the Yangtze Volcanic Zone is thought to be related to adjustments within the Eurasian plate as a consequence of collision between the earlier Pacific (Kula) plate and the Eurasian plate.  相似文献   

19.
Alkaline lavas were erupted as phonolites and trachytes around Karaburhan (Sivrihisar–Eskisehir, NW Anatolia) within the Izmir–Ankara–Erzincan suture zone. These volcanic rocks were emplaced as domes, close and parallel to the ophiolite thrust line. According to 40Ar/39Ar geochronological analyses of sanidine crystals from the phonolites, the age of the alkaline volcanics is 25 Ma (Late Oligocene–Early Miocene).The flow-textured phonolites are porphyritic and consist mainly of sanidine, clinopyroxene, and feldspathoid crystals. The clinopyroxenes show compositional zoning, with aegirine (Na0.82–0.96Fe+30.68–0.83) rims and aegirine–augite cores (containing calcium, magnesium, and Fe+2). Some aegirine–augites are replaced with sodium-, calcium-, and magnesium-rich amphibole (hastingsite). Feldspathoid (hauyne) crystals enriched with elemental Na and Ca have been almost completely altered to zeolite and carbonate minerals. The fine-grained trachytes with a trachytic texture consist of feldspar (oligoclase and sanidine) phenocrystals and clinopyroxene microphenocrystals within a groundmass made up largely of alkali feldspar microlites.Although there are some differences in their element patterns, the phonolites and trachytes exhibit enrichment in LILEs (Sr, K, Rb, Ba, Th) and LREEs (La, Ce, Pr, Nd) and negative anomalies in Nb and Ta. These geochemical characteristics indicate a lithospheric mantle enriched by fluids extracted from the subduction component. In addition, the high 87Sr/86Sr (0.706358–0.708052) and low 143Nd/144Nd (0.512546–0.512646) isotope concentrations of the alkaline lavas reflect a mantle source that has undergone metasomatism by subduction-derived fluids. Petrogenetic modeling indicates that the alkaline lavas generated from the subduction-modified lithospheric mantle have undergone assimilation, fractional crystallization, and crustal contamination, acquiring high Pb, Ba, Rb, and Sr contents and Pb isotopic compositions during their ascent through the thickened crust in an extensional setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号