首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
2000-2005年青藏高原积雪时空变化分析   总被引:16,自引:6,他引:10  
王叶堂  何勇  侯书贵 《冰川冻土》2007,29(6):855-861
利用MODIS卫星反演的积雪资料以及同期气象资料,分析了2000-2005年青藏高原积雪分布特征、年际变化及其与同期气温和降水的关系,结果表明:青藏高原积雪分布极不均匀,四周山区多雪,腹地少雪;高原积雪期主要集中在10月到翌年5月;2000-2005年高原积雪年际变化差异较大,积雪面积总体上呈现冬春季减少、夏秋季增加的趋势;气温和降水是影响高原积雪变化的基本因子.冬季,高原积雪面积变化对降水更为敏感;春季,气温是影响高原积雪面积变化更主要的因素.  相似文献   

2.
青藏高原气候变化的若干事实及其年际振荡的成因探讨   总被引:1,自引:0,他引:1  
利用1961-2012年青藏高原88个气象台站逐月气温、降水以及温室气体等气候系统监测资料和CMIP5输出的未来气候变化情景数据,分析了近52年来青藏高原气候变化暖湿化的若干事实,揭示了其年际振荡与温室气体、高原加热场、高原季风、AO等气候系统因子的关系,预测了未来20~40年青藏高原可能的气候变化趋势。研究表明:近52年来青藏高原在总体保持气候变暖的趋势下自2006年以来出现了某些增暖趋于缓和的迹象,较全球变化滞后了8年左右;降水量的增加在青藏高原具有明显的普遍性和显著性,气候变湿较变暖具有一定的滞后性,降水量变化的5年短周期日趋不显著,而12年、25年较长周期逐渐明显且仍呈增多趋势。由于温室气体、气溶胶持续增加、高原夏季风趋强、ENSO事件和太阳辐射减少,青藏高原气候持续增暖但有所缓和;春季高原加热场增强、高原夏季风爆发提前且保持强劲,使得高原春、夏季和年降水量增加,而秋、冬季AO相对稳定少动,东亚大槽强度无明显变化,高原冬季风变化不甚显著,导致了高原秋、冬季降水量无明显变化。未来20~40年青藏高原仍有可能继续保持气温升高、降水增加趋势。  相似文献   

3.
利用青藏高原69个气象台站的降水量资料,采用旋转经验正交函数分析(REOF)、线性趋势分析和累积距平法,系统地研究了1961-2010年青藏高原降水的时空变化规律,揭示了青藏高原不同区域降水变化的差异性.研究表明:近50 a来青藏高原降水量总体呈现增加趋势,增长率为6.7 mm·(10a)-1;青藏高原降水季节分配极不均匀,雨季和旱季非常明显,雨季降水占有主导作用;青藏高原降水由东南向西北递减,而且年际变化具有一定的多元化特征;青藏高原降水量变化空间分布差异显著,采用REOF法将整个高原划分为10个小区,每个小区降水变化都具有不同的特征,除了青海东北部区和青海东南部-川北区降水呈减少趋势外,其他8个小区降水均呈增加趋势.  相似文献   

4.
青藏高原南北降水变化差异研究   总被引:13,自引:5,他引:8  
利用青藏高原1960-2004年近45 a气象台站年降水记录, 对高原中东部年降水做了空间变化分析, 发现高原以唐古拉山为界, 高原南北降水变化存在明显差异, 特别是高原南部和东北部降水几乎成相反的变化. 进一步分析5个重建的长时间降水序列, 发现青藏高原南北降水在百年时间尺度上也存在明显的差异. 在百年时间尺度上, 过去600 a高原南北降水变化都在1740年和1850年左右发生突变. 1740年以前, 整个高原北部降水都在波动中增加, 而高原南部在减小;1740-1850年期间, 高原北部降水在波动中减小, 而高原南部在增加;1850年以后, 高原北部降水又在波动中增加, 而高原南部降水在减小. 高原南北降水变化的空间差异主要是由季风和西风带决定的.  相似文献   

5.
卓嘎  罗布  巴桑曲珍 《冰川冻土》2021,43(6):1704-1717
青藏高原土壤水热状况对气候变化和植被退化方面的研究具有重要意义,土壤湿度的准确刻画还会影响到数值预报模式对当地及其下游地区降水的模拟能力。为此,采用中国科学院那曲高寒气候环境观测研究站安多观测点2014年1—12月的土壤温度、土壤湿度观测资料以及同期安多气象站观测数据,分析了青藏高原那曲中部不同深度土壤温湿度的分布特征及其与气温、降水量等气象要素的关系。结果表明:土壤温度在浅层为正弦曲线,随着土壤深度的增加,曲线逐渐接近直线。土壤升温迅速而降温过程缓慢。封冻和解冻日期随土壤深度的增加而推迟,封冻期逐渐缩短。不同层次土壤湿度日内变化较小。月变化呈单峰型结构,峰值和谷值基本出现在8月和12月。土壤湿度上升速率较下降速率缓慢。区域尺度上GLDAS-NOAH资料显示出类似的变化特征。土壤温湿度在一年中的变化不一致,但土壤温湿度呈显著正相关。浅层土壤的温度梯度明显大于深层;浅层土壤湿度最大,中间层较大,深层土壤湿度最小。随着干季向湿季的转换,由于太阳辐射的增加,非绝热加热呈增加的趋势。土壤湿度与气象要素在不同时段的相关性存在一些差异,但总体上土壤湿度与气温、降水量和相对湿度呈正相关,与风速、日照时数相关性不显著。  相似文献   

6.
青藏高原陆表特征与中国夏季降水的关系研究   总被引:6,自引:5,他引:1  
高荣  韦志刚  钟海玲 《冰川冻土》2017,39(4):741-747
利用青藏高原72个站逐日积雪、冻土观测资料,AVHRR归一化植被指数(NDVI)和全国550个站逐日降水资料,分析了青藏高原陆表特征与中国夏季降水的关系。结果表明,我国夏季降水在华北和东北南部,长江中下游和华南地区降水空间一致性较好,相邻站点间降水变化趋势近似。华南、长江中下游和淮河降水呈增加趋势,其中长江中下游每10年增加37 mm,但华北降水呈减少趋势。华南、长江中下游和华北对高原积雪、冻土和植被的变化均较为敏感,而淮河仅对高原植被变化较为敏感。利用高原积雪、冻土和植被建立了代表高原地表特征的变化序列,其对长江中下游、淮河、华北夏季降水均有较好指示意义,与夏季降水的相关系数由南到北表现为"负-正-负"的分布特征。最后,提出一种高原陆表状况影响中国夏季降水的概念模型:高原冬春积雪偏多(少)、冬季冻土偏厚(薄)、春季植被偏多(少)会使得夏季高原地区土壤湿度偏大(小),高原地表感热偏弱(强),从而使得南亚高压和西太副高偏弱(强),南海季风偏弱(强),长江流域降水偏多(少),华南和华北地区降水偏少(多)。  相似文献   

7.
吉林近50a来气候的年代际变化特征及其突变分析   总被引:16,自引:6,他引:10  
利用吉林省50个地面气象站的观测资料对近50 a来吉林气候的年代际变化进行了诊断分析, 结果表明: 吉林省的年平均气温在20世纪50年代呈下降趋势, 60年代为相对低温期, 70年代开始表现出逐渐增温的趋势; 20世纪50年代降水量逐渐减少, 60-70年代为相对降水少的时期, 80年代降水略有增加, 进入90年代以后, 降水量又表现为逐渐减少的趋势. 近50 a来气候的年代际变化经历了一个"冷湿-冷干-暖湿-暖干"的过程.吉林省的最高、最低气温在近50 a内的总体趋势都是上升的, 但从增温率来看, 最低气温大约是最高气温的2.3倍.采用分段线性拟合的方法对吉林省年降水量和年平均气温进行气候突变的检验, 发现年降水量在1977和1987年各有一次突变, 年平均气温只在1969年发生了一次突变.  相似文献   

8.
青藏高原春季土壤湿度与中国东部夏季降水之间的关系   总被引:11,自引:6,他引:5  
应用SVD方法分析了青藏高原地区春季土壤湿度异常和中国东部地区夏季降水之间的关系.结果表明,青藏高原不同地区、不同深度的土壤湿度与中国东部夏季降水的相关特征不同.青藏高原东北部和西北部0~10cm深度(表层)土壤湿度与中国华北、东北地区的夏季降水为正相关,而与华南地区为负相关;青藏高原中部及南部0~10cm表层土壤湿度与华北地区夏季的降水有较强负相关;青藏高原北部及东部10~200cm深度(深层)土壤湿度与华北、东北地区的夏季降水为负相关,而与华南地区夏季降水为正相关;青藏高原中东部10~200cm深层土壤湿度与长江中下游和华南大部分地区夏季降水呈负相关关系.即青藏高原不同地区、不同深度层春季土壤湿度的变化,对中国东部地区的夏季降水具有显著影响.  相似文献   

9.
黄河源区气候变化的季节特征与区域差异研究   总被引:7,自引:5,他引:2  
基于黄河源区有关气象台站的观测数据,对该区黄河沿水文站以上、黄河沿水文站-吉迈水文站区间、吉迈水文站-玛曲水文站区间、玛曲水文站-唐乃亥水文站区间各区域及整个黄河源区1960-2014年期间气温、降水的季节变化特征及其区域差异进行了分析。结果表明:黄河源区气温变化与全球气温变化有着较好的一致性,各区年平均气温与各季气温的年际变化均呈波动状上升态势并明显高于过去50a全球与我国气温的升幅,且各气温系列升幅差异不大;而各区年平均气温与各季气温的年代际变化的上升态势较年际变化的更为显著,但不同区域各季气温升幅差异较大。各区气温均在1996年后出现一个跃动,跃动后各气温系列均值较跃动前有较大幅度的上升。由于区域地理环境的影响,黄河源区降水量的变化比较复杂,各区各季降水量的变化具有较大的差异。近50余年来,总体上整个河源区平均降水量的年际变化呈不明显的增长态势。其中河源区的上半部分,即黄河沿以上、黄河沿-吉迈之间等海拔较高的区域年降水量增长比较显著,而源区的下半部分,即吉迈-玛曲、玛曲-唐乃亥之间的区域,年降水呈减少态势,并且对全区平均降水量与产流量贡献最大的吉迈-玛曲之间的区域,年降水量的减少非常显著。各区冬春季和夏季降水量普遍呈增长态势,秋季是河源区各季节中降水唯一减少的季节,其中吉迈-玛曲之间的区间秋季降水量的减少最为显著。各区域各季降水量的年代际变化较其年际变化差异更大,但近十余年来大部分区域各季降水普遍偏多。各区域降水系列亦有突变发生,但突变时间并不像气温系列那样一致;年降水量与夏季降水量的突变大都发生在2005年,秋季降水量突变大都发生在1986年,春季和冬季降水量突变的时间杂乱无序;突变前后系列均值有增有减,且幅度大小不等。  相似文献   

10.
青藏高原河源区气候变化特征分析   总被引:19,自引:8,他引:11  
利用1954-2007年青藏高原河源区(包括长江、黄河、澜沧江、怒江和雅鲁藏布江)30个气象站的年平均气温和降水量,通过计算气候倾向率和距平小波分析(墨西哥帽小波函数)等方法分析了近54 a来青藏高原河源区的气候变化特征.结果表明:青藏高原河源区年平均气温变化在7~-3℃之间,由东南向西北逐渐减少;并呈现逐年上升的趋势,自20世纪90年代以来升温更为强烈.年降水量的分布大致是由东南向西北逐步减少,在同一纬度上,东部的降水量多于西部,2001-2005年的多年平均降水量达到历史最大值.年平均气温和降水的周期振荡在高频区振荡频繁,有多个突变点,中低频区则较平缓.不同河源区的气温增温率具有显著的区域性差异,雅鲁藏布江源区最大(0.54℃.(10a)-1),黄河次之(0.31℃.(10a)-1),澜沧江和怒江最小(0.17℃.(10a)-1).除少数气象站外,区域内各站的年平均气温也普遍升高.澜沧江源区是整个青藏高原河源区降水量升幅最大的地区,而雅鲁藏布江源区为降水量升幅最小的区域.从整个青藏高原来看,温度和降水均普遍升高,整个区域呈现暖湿化趋势,但降水量的增加较微弱.  相似文献   

11.
长江源区高寒退化湿地地表蒸散特征研究   总被引:1,自引:0,他引:1  
青藏高原作为“亚洲水塔”,对东亚乃至全球大气水分循环都有非常显著的影响.高寒退化湿地是高原上生态多样性的保证,也是水汽循环和地表径流的重要源地,其地气之间水分交换不但可以反映气候变化,而且也对生态环境保护具有重要意义.以长江源区隆宝滩湿地连续一年、每10分钟一次的观测资料为基础,利用FAO Penman-Monteith方法分析了长江源区高寒退化湿地蒸散量的变化特征及其与环境因子之间的关系.结果表明:1)牧草生长期,潜在蒸散量日、月变化特征显著;实际蒸散量整体表现为冬小、夏大,夏季蒸散贡献最大.2)观测期间,蒸散量远大于降水量,水分亏损严重,局地蒸散对降水的贡献较高.3)土壤温度对蒸散发过程影响显著,尤其是表层5 cm地温与蒸散发相关性较好,土壤湿度变化表明其为蒸散发过程提供了充足的水分.4)全年变化中,气温是影响蒸散的主要因素.晴天中,高寒退化湿地实际蒸散量与辐射具有几乎相同的变化趋势,气温对蒸散量影响较小,蒸散量与相对湿度呈现显著的反相关.  相似文献   

12.
青藏高原土壤水热过程模拟研究(Ⅰ):土壤湿度   总被引:6,自引:4,他引:2  
模拟青藏高原土壤水分和热量迁移过程的连续变化对于全球变化研究具有非常重要的意义,其准确模拟是提高陆面过程模拟精度的重要条件.利用大尺度水文模型中对冻土中水分和能量平衡过程的描述,对沱沱河站点超过一年时间的土壤湿度进行了步长为1h,总时间为399d的连续模拟.与Game Tibet项目中同一时刻的土壤湿度观测资料比较的结果表明,Fuchs方程对于描述冻土中的最大未冻水含量是有效的,利用能量平衡计算获得的土壤各层的湿度与观测值相比较,其连续变化基本合理.结果表明,用该模型对高原水热过程进行长期模拟是可行的.  相似文献   

13.
查明青藏高原高寒草甸区土壤水分运移机制,对正确理解土壤水分迁移过程、提高高寒草甸重建效率具有重要指导意义。通过开展土壤剖面负压、地温观测等原位试验,结合气象资料,对土壤剖面地温、含水率及总水头特征进行分析。结果表明,土壤的冻结期起始于10月,解冻期起始于4月;地温最高值出现在植物生长旺盛期8月,最低值出现在1月;1~3月土壤水分呈固态,6~10月土壤水分呈液态,处于稳定变化阶段,4~5月、11~12月土壤水分呈固液转化态,含水率变化幅度较大,处于过渡阶段。随着气温升高及降水量增加,6~8月水热同季有利于高寒草甸生长,属于高寒草甸主要生长阶段;春季土层由表及深土壤解冻,冻土层滞水性能保障了返青期春旱牧草生长的水分需求;深秋季节的由表及深的土壤冻结,深层土壤水分随水汽发生的表聚作用保障了牧草生长的水分需求,也是高原生态系统能够维持稳定的原因之一。  相似文献   

14.
陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因   总被引:2,自引:0,他引:2  
李时越  杨凯  王澄海 《冰川冻土》2018,40(2):322-334
利用中国区域地面气象要素数据集制作的大气强迫场驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对青藏高原区域进行离线模拟试验,模拟结果与D66、沱沱河(TTH)和玛曲(Maqu)3个站点的观测资料以及GLDAS(Global Land Data Assimilation System)-CLM2模拟结果进行了对比,并分析了陆面模式对冻融过程中土壤温度和湿度模拟的偏差及其可能原因。结果表明:CLM4.5对土壤温度模拟较好(平均RMSE≈3℃),而GLDAS-CLM2计算的土壤温度偏高,偏差较大(平均RMSE>6℃),且其偏差大于CLM4.5,尤其在冻融期;CLM4.5能较好地模拟出冻融过程中土壤湿度季节变化,但土壤湿度的模拟值与观测值存在一定偏差(平均RMSE≈0.1 mm3·mm-3),GLDAS-CLM2不能反映出土壤湿度在冻融过程中的变化特征。CLM4.5的模拟偏差主要来自大气强迫场,而GLDAS-CLM2的偏差除了大气强迫场的不确定性外,还来自于模式冻融参数化方案的不完善。大气强迫场中的气温和降水对土壤温度和湿度的影响在冻融期和非冻融期表现不同。在非冻融期,土壤温度的模拟主要受气温的影响(r>0.6),气温偏差对土壤温度偏差的贡献率大于50%;土壤湿度的变化则主要受降水的影响,降水偏差对土壤湿度偏差的贡献率为20%~40%。在冻融期,受土壤水热相互作用的影响,气温和降水对土壤温度和湿度的作用效果减弱;土壤湿度的变化受气温影响显著,其贡献率为10%~20%。陆面模式中冻融参数方案的不完善是冻融过程中土壤温度和湿度偏差的重要来源之一。  相似文献   

15.
藏北高原D105点土壤冻融状况与温湿特征分析   总被引:6,自引:3,他引:3  
利用CAMP/Tibet在藏北高原D105点所观测的2002年1月1日-2005年12月31日土壤温度、含水量资料, 分析了该点的土壤温、湿度变化及其冻融特征. 结果表明: D105点40 cm深度以上土壤温度日变化明显, 随着深度增加, 土壤温度日变化相位明显滞后. 各层土壤温度月最高值出现在8-9月, 月最低值都出现在1-2月; 年际气候的差异至少可以反映到185 cm深处的土壤. 土壤冻结和消融都是由表层开始, 土壤随深度增加冻结快, 消融则慢. 冻结期间, 土壤温度分布上部低, 下部高; 消融期间, 则分布相反. 60 cm深度以上的土壤含水量在消融期有显著的波动, 表明60 cm深度以上的土壤与大气之间的水热交换比较频繁. 土壤温度的日变化和平均温度对土壤的冻融过程有较大的影响; 土壤含水量的多少会极大的影响土壤的冻融过程、土壤热量的分布状况以及地表能量的分配. 因此水(湿度)热(温度)相互耦合影响着土壤的冻融过程.  相似文献   

16.
EFFECT OF SOIL MOISTURE-ENERGY DISTRIBUTION AND MELTING-FREEZING PROCESSES ON SEASONAL SHIFT IN TIBETAN PLATEAUtheNational(G19980 4 0 80 0 )andCAS’sKeyProjectforBasicResearchonTibetanPlateau (KZ951 A1 2 0 4 ;;KZ951 A1 4 0 2 ;;KZ951 B1 2  相似文献   

17.
2009-2010年青藏高原土壤湿度的时空分布特征   总被引:2,自引:0,他引:2  
卓嘎  陈涛  周刊社  罗珍 《冰川冻土》2015,37(3):625-634
利用2009年7月1日至2010年6月30日中国气象局研制的多源土壤温湿度融合分析产品, 分析了青藏高原地区不同深度的土壤湿度分布特征. 结果表明: 青藏高原土壤湿度具有显著的季节变化特征, 即春季土壤湿度最大, 夏季次之, 秋季最小; 土壤湿度呈现出浅层和深层低湿、中间层高湿的特点, 且土壤湿度由浅到深层变化幅度逐渐减小. 随着温度回升, 3-8月为土壤湿度增加时段, 湿度增加区域从藏东南向西北、塔里木盆地向藏东北扩展, 9月以后土壤湿度呈大范围减小. 随着季节变化, 浅层土壤湿度高湿度区域从南部向北部移动, 中间层土壤湿度的变化与浅层相反, 深层土壤湿度季节变化差异不大, 高湿度区域基本位于高原南部.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号