首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Miles theory of sea wave growth implies that, in a coordinate system moving with the wave phase velocity, closed streamline cats'-eyes are formed around the critical height where the mean wind speed equals the wave phase speed. From inspection of the equations of motion (the Rayleigh system), it is shown that these cats'-eyes may lie either over the wave crests or over the wave troughs, depending upon the behaviour of the mean wind profile. The validity of using Miles first approximation of the streamfunction' to approximate the actual streamline pattern is also discussed.  相似文献   

2.
Local Similarity Relationships In The Urban Boundary Layer   总被引:5,自引:3,他引:2  
To investigate turbulent structures in an urban boundary layer (UBL) with many tallbuildings, a number of non-dimensional variable groups based on turbulent observationsfrom a 325-m meteorological tower in the urban area of Beijing, China, are analyzedin the framework of local similarity. The extension of surface-layer similarity to localsimilarity in the stable and unstable boundary layer is also discussed. According to localsimilarity, dimensionless quantities of variables: e.g., velocity and temperature standarddeviations i/u*l (i=u,v,w) andT/T*l,correlation coefficients of uw and wT covariance, gradients of wind and temperaturem and h, and dissipation rates of turbulent kinetic energy (TKE) andtemperature variance and N can be represented as a functiononly of a local stability parameter z/, where is the local Obukhovlength and z is the height above ground. The average dissipation rates of TKE andtemperature variance are computed by using the u spectrum, and the uw and wTcospectra in the inertial subrange. The functions above were found to be in a goodagreement with observational behaviour of turbulence under unstable conditions, butthere were obvious differences in the stable air.  相似文献   

3.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

4.
Turbulence measurements from a 30 m tower in the stably stratifiedboundary layer over the Greenland ice sheet are analyzed. The observationsinclude profile and eddy-correlation measurements at various levels. Atfirst, the analysis of the turbulence data from the lowest level (2 m aboveground) shows that the linear form of the non-dimensional wind profile(m) is in good agreement with the observations for z/L <0.4, whereL represents the Obukhov length. A linear regression yieldsm=1+5.8z/L. The non-dimensional temperature profile (h) at the2m level shows no tendency to increase with increasing stability. The datafrom the upper levels of the tower are analyzed in terms of both localscaling and surface-layer scaling. The m and the h values show atendency to level off at large stability (z/>0.4) where represents the local Obukhov length. Hence, the linear form of the functions is no longer appropriate under such conditions. The bestcorrespondence to the data can be achieved when using the expression ofBeljaars and Holtslag for m and h. The vertical profiles of theturbulent fluxes, the wind velocity variances and temperature variance arealso determined. The momentum flux profile and the profiles of wind speedvariances are in general agreement with other observations if a welldeveloped low-level wind maximum occurs, and the height of this maximum isused as a height scale.  相似文献   

5.
A comparison of observations by different authors reveals that systematic differences exist between momentum fluxes measured directly, and momentum fluxes determined indirectly by the dissipation method. This discrepancy is attributed to systematic errors due to the indirect determination of energy dissipation from the presumed inertial subrange spectrum of the horizontal wind component. The discrepancy increases with increasing degree of anisotropy, indicated by the ratio (vertical wind spectrum): (horizontal wind spectrum) deviating from % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaais% daaeaacaaIZaaaaaaa!33E6!\[\frac{4}{3}\]The results support a value of 0.48 for Kolmogoroff's constant.  相似文献   

6.
A Note on Velocity Spectra in the Marine Boundary Layer   总被引:1,自引:1,他引:0  
Spectra of longitudinal and vertical velocity have been studied at a marine site, östergarnsholm, in the Baltic Sea during a period of six days with near-neutral or slightly unstable conditions, when the wave state gradually changed from pure wind sea to strong swell having approximately the same direction as the wind. During the pure wind sea phase, spectra are shown to adhere closely to general forms for the neutral atmospheric surface layer obtained from a new theory. As soon as the wave age goes slightly beyond that representative of pure wind sea conditions, the spectra deviate in shape from the ideal forms. The spectral modification appears to start at a frequency typical of the swell component. As the wave age increases, it progresses in frequency as a downscale cascade, which is particularly prominent in the spectrum of the vertical component but which is also observed in the longitudinal component. In addition, there is a strong effect in the low-frequency part of the spectra. It is interpreted as an indirect effect of large-scale inactive turbulence, which becomes progressively more important as wave-age increases. It is found that the ratio of the spectrum of the vertical component and the spectrum of the corresponding longitudinal component attains the theoretically predicted value of 4/3 for cases of developing sea (gale force wind) for frequencies above approximately 4 Hz but never much exceeds unity for cases with swell. It is argued that this is an indication of local anisotropy and that the inertial-dissipation method for determination of the momentum flux is inappropriate in the case of mixed seas or swell.  相似文献   

7.
A numerical case study with a second-order turbulence closure model is proposed to study the role of urban canopy layer (UCL) for the formation of the nocturnal urban boundary layer (UBL). The turbulent diffusion coefficient was determined from an algebraic stress model. The concept of urban building surface area density is proposed to represent the UCL. Calculated results were also compared with field observation data. The height of the elevated inversion above an urban center was simulated and found to be approximately twice the average building height. The turbulent kinetic energy k, energy dissipation rate , and turbulence intensities u 2 and w 2 increase rapidly at the upwind edge of the urban area. The Reynolds stress uw displayed a nearly uniform profile inside the UBL, and the vertical sensible heat flux w had a negative value at the inversion base height. This indicates that the downward transport of sensible heat from the inversion base may play an important role in the formation of the nocturnal UBL.  相似文献   

8.
This note is devoted to the problem of the appropriate scaling of parameters relevant for sea waves, such as wave height, peak frequency, duration, and fetch. In the past, the growth of sea waves has often been analysed in terms of the wind velocity at a fixed height, despite the fact that many authors have stressed the importance of scaling with the friction velocity. This problem would be immaterial if the ratio between the friction velocity and the wind speed at a fixed height were a constant. There is, however, ample evidence that this ratio increases with wind speed (Smith and Banke, 1975; Smith, 1980), in agreement with dimensional considerations by Charnock (1955) on the friction height. As a result, the scaling problem is an important one. In this note we conjecture that the correct procedure is to scale wave parameters with friction velocity, and we discuss experimental evidence for the correctness of this conjecture. Comparing two independent datasets (JONSWAP and KNMI), we find some evidence supporting our ideas. Further confirmation remains desirable, however, and suggestions are made as to how this might be obtained.  相似文献   

9.
Horizontal diffusion in the surface layer is dependent on the standard deviation of wind direction fluctuations . Diurnal variation of this parameter in complex terrain was studied for the July 1979 Geysers, Cal., experiment using data from a network of 11 short meteorological towers in the 25 km2 Anderson Creek watershed Valley side slopes are roughly 20 ° and maximum terrain difference is about 1 km.Values of for wind directions sampled for one hour at a height of 10 m are about 35 ° during the daytime. They slowly decrease to about 20 ° by 8 to 10 p.m. as stability increases but wind speeds are still relatively high. After 10 p.m. the drainage flow sets in at most stations, with speeds of 1 to 2 m s-1, and average increases to about 30° during the period 11 p.m. to 6 a.m. In general, highest values of at night are associated with lowest values of wind speed and greatest static stability. This enhancement of by the terrain suggests that horizontal diffusion at night always conforms to that expected during nearly neutral stabilities. That is, Pasquill class D diffusion applies to the horizontal component all night in complex terrain.  相似文献   

10.
The standard E – model generates aplanetary boundary layerthat appears to be much too deep. The cause of theproblem is traced to the equation for the dissipationrate () of turbulent kinetic energy (E), specifically theparameterization of dissipation production anddestruction. In the context of atmosphericboundary-layer modelling, we argue that a part of thedissipation production should be modelled as the inputto the spectral cascade from the energy-containingpart of the spectrum, with a characteristic length , while the equilibrium imbalancebetween local production and destruction ofdissipation is modelled as proportional toE2/E, as in the standard model. Wepropose an E – – turbulence closurescheme, in which both the mixing length, m, and are prescribed. The importance ofthe equation is diminished, though itstill determines the dissipation rate in the Eequation.  相似文献   

11.
This study details the observed effects ofatmospheric stability on characteristics of thesurface layer in a low wind speed (U = 1.5 m s-1)regime of tropical West Africa. Theaerodynamic roughness length, z0, anddisplacement height, d, obtained from profilewind-speed data at our bush land site (height 2 m)have values of 0.24 ± 0.10 m and 1.54 ± 0.04 mrespectively. In the unstable range (-2.5 < Ri < -0.1; Riis gradient Richardson number), thestandard deviation in wind speed fluctuations, u, increased from 0.57 ± 0.19 m s-1 toa maximum of 0.7 ± 0.2 m s-1 in near-neutralconditions, and in the stable range, the parameterdecreased rapidly to 0.41 ± 0.15 m s-1 at Ri 0.2.In the same stability range, the horizontal winddispersion, , decreased withincreasing stability from 19 ± 8 deg. to 13 ± 5 deg.The surface-layer integral quantity, u/u*, when plottedas a function of stability, is in agreement with theempirical results. The ratio ofsensible heat flux (estimated) to the net radiationranged between 0.1 and 0.2 at nighttime,increasing to about 0.5 during the daytime, and showeda strong dependency on season.  相似文献   

12.
Summary This study presents an analytical investigation of the local behaviour of the solution to a mesoscale model with Newtonian nudging when observed winds are time varying. The analysis examines each Fourier component of the time series of observed winds. Unlike the case with a constant observed wind, the nudged wind vector does not asymptotically approach the observed wind. In response to sinusoidal oscillation of the observed wind, the nudged wind vector is always on a half circle connecting the vector ends of the observed and un-nudged modelled winds. When nudging parameter 0, the nudged wind vector approaches the un-nudged wind; when , the nudged wind vector approaches the observed wind. For commonly used values of nudging parameter , the modelled wind field always carries errors.A target nudging scheme is devised in this study in order to ensure the model result is identical to observed winds with sinusoidal oscillation. Investigation shows that such a target wind exists for a finite value of , and the magnitude of the target-nudging term is about the same as that of a normal nudging term if f, wheref is the Coriolis parameter and is the frequency of the wind oscillation.With 7 Figures  相似文献   

13.
The stable planetary boundary layer at the baseof the residual layer supports internalwaves that are unambiguously boundary layer incharacter. Some of these wavesare instabilities and some are neutrally stable modes, but they all have critical levelsin the residual layer. These waves exist for a broad range of conditions and should bea major component of any ducted disturbance that propagates within ninety degreesof the wind direction. The wave properties can be computed without the numericaldifficulties usually associated with critical-level systems.  相似文献   

14.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

15.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

16.
A combination of lateral coherence measurements of wind speed at five locations suggests that the decay constant is a monotonically increasing function of the ratio of separation to height, under neutral conditions.  相似文献   

17.
The term variangular is introduced to emphasize a significant difference between the present and certain earlier solutions to the problem of organized airmotion within the planetary boundary layer. The latter belong to the family of equiangular wind spirals and have the characteristic that the angle () formed by the vectors of shearing stress and geostrophic departure is invariant with height; it is shown that in this spiral-family, parabolic height-dependency of the effective (eddy) diffusivity (K) alone is permitted, including the asymptotic case of constant K; the famous Ekman spiral as well as the Rossby spiral are two prominent members of the family of equiangular wind spirals. The new variangular theory, as the name implies, permits variation of with height (z) and produces more versatile profiles of wind and stress due to less restraint in K (z). As an example of comparison with observed data, monthly mean wind profiles obtained at Plateau Station, Antarctica, are selected since they exhibit a noteworthy degree of variangularity, in relatively satisfactory agreement with properties of the new theoretical model for wind spirals.National Research Council Visiting Scientist Research Associate, Regional Environments Division, Earth Sciences Laboratory.  相似文献   

18.
The paper describes various aspects of the wind regime in coastal areas as obtained from several experimental programs along the Baltic coast of Sweden. The studies include the change with distance inland of mean wind structure as well as the turbulence structure in various conditions. It is found that wind spectra are usually well described by local similarity in its high frequency part, even in complex terrain. The low frequency parts of the spectra show clear spectral lag effects. The effects of a small slope, ca 5 m height change over 300 m travel distance, is clearly seen in some spectra, and it is shown that current flow over a hill theory can be used to account for it. The change of mean wind speed throughout the entire boundary layer as the wind passes a low but wooded island (Gotland), ca 30 km wide, has been studied in a series of relatively strong wind, near neutral cases. Some unexpected features are found; in particular the wind speed decreases more rapidly with distance inland than predicted by current numerical models. Two cases with a low level jet are discussed in some detail. Arguments are presented for the phenomenon to be caused by frictional decoupling at the Latvian coast, about 200 km upwind — the jet being thus an analogy in space to the classical Blackadar nocturnal jet frequently observed in continental areas.  相似文献   

19.
A simple formula, (1 + (2fmc))-1,is proposed to estimate the attenuation of a scalar flux measurement made by eddy-correlation using a fast-response anemometer and a linear, first-order-response scalar sensor with a characteristic time constant c.In this formula, =7/8 for neutral and unstable stratification within the surface-flux layer and =1 both within the convective boundary layer (CBL) and for stable stratification in the surface layer.fm is the frequency of the peak of the logarithmic cospectrum and can be estimated from fm = nm /z, where z is the measurement height and is thewind speed at that height. The dimensionless frequency at the cospectral maximum nm is estimated here from observations of its behavioras a function of atmospheric stability, z/L within the surface layeror z/zi within the CBL, where L is the Obukhov stability length and zi is the depth of the CBL. The predicted dependence of flux attenuation on measurement height is discussed.  相似文献   

20.
E- turbulence model predictions of the neutralatmospheric boundary layer (NABL) are reinvestigated to determine thecause for turbulence overpredictions found in previous applications. Analytical solutions to the coupled E and equations for the case of steady balance between transport and dissipation terms, the dominant balance just below the NABL top, are derived. It is found that analytical turbulence profiles laminarizeat a finite height only for values of closure parameter ratio c 2 /e equal toor slightly greater than one, with laminarization as z for greater . The point = 2 is additionally foundthat where analytical turbulent length scale (l) profilesmade a transition from ones ofdecreasing ( < 2) to increasing ( > 2)values with height. Numerically predicted profiles near the NABL topare consistent with analytical findings. The height-increasingvalues of l predicted throughout the NABL with standard values ofclosure parameters thus appear a consequence of 2.5(> 2), implied by these values (c 2 = 1.92, = 1.3, e = 1). Comparison of numericalpredictions with DNS data shows that turbulence overpredictions obtained with standard-valued parameters are rectifiedby resetting and e to 1.1 and 1.6, respectively, giving, with c 2 = 1.92, 1.3, and laminarization of the NABL's cappingtransport-dissipation region at a finite height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号