首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
This study highlights three‐dimensional variability of stratigraphic geometries in the ramp crest to basin of mixed carbonate–siliciclastic clinoforms in the Permian San Andres Formation. Standard field techniques and mapping using ground‐based lidar reveal a high degree of architectural complexity in channellized, scoured and mounded outer ramp stratigraphy. Development of these features was a function of location along the ramp profile and fluctuations in relative sea‐level. Deposition of coarse‐grained and fine‐grained turbidites in the distal outer ramp occurred through dilute and high‐density turbidity flows and was the result of highstand carbonate shedding within individual cycles. In this setting, high‐frequency cycles of relative sea‐level are interpreted on the basis of turbidite frequency, lateral extent and composition. Submarine siliciclastic sediment bypass during lowstand cycles resulted in variable degrees of siliciclastic preservation. Abundant siliciclastic material is preserved in the basin and distal outer ramp as point‐sourced lowstand wedges and line‐sourced early transgressive blankets. In mounded topography of the outer ramp, siliciclastic preservation is minimal to absent, and rare incised channels offer the best opportunity for recognition of a sequence boundary. Growth of mounded topography in the outer ramp began with scouring, followed by a combination of bioherm construction, fusulinid mound construction and isopachous draping. Intermound areas were then filled with sediment and continued mound growth was prevented by an accommodation limit. Mound growth was independent of high‐frequency cycles in relative sea‐level but was dependent on available accommodation dictated by low‐frequency cyclicity. Low‐angle ramp clinoforms with mounded topography in the outer ramp developed during the transgressive part of a composite sequence. Mound growth terminated as the ramp transformed into a shelf with oblique clinoform geometries during the highstand of the composite sequence. This example represents a ramp‐to‐shelf transition that is the result of forcing by relative sea‐level fluctuations rather than ecologic or tectonic controls.  相似文献   

3.
During the early Middle Devonian in South China, an extensive carbonate platform was broken up through extension to create a complex pattern of platforms, and interplatform basins. In Givetian and Frasnian carbonate successions, five depositional facies, including peritidal, restricted shallow subtidal, semi‐restricted subtidal, intermediate subtidal and deep subtidal facies, and 18 lithofacies units are recognized from measured sections on three isolated platforms. These deposits are arranged into metre‐scale, upward‐shallowing peritidal and subtidal cycles. Nine third‐order sequences are identified from changes in cycle stacking patterns, vertical facies changes and the stratigraphic distribution of subaerial exposure indicators. These sequences mostly consist of a lower transgressive part and an upper regressive part. Transgressive packages are dominated by thicker‐than‐average subtidal cycles, and regressive packages by thinner‐than‐average peritidal cycles. Sequence boundaries are transitional zones composed of stacked, high‐frequency, thinner‐than‐average cycles with upward‐increasing intensity of subaerial exposure, rather than individual, laterally traceable surfaces. These sequences can be further grouped into catch‐up and keep‐up sequence sets from the long‐term (second‐order) changes in accommodation and vertical facies changes. Catch‐up sequences are characterized by relatively thick cycle packages with a high percentage of intermediate to shallow subtidal facies, and even deep subtidal facies locally within some individual sequences, recording long‐term accommodation gain. Keep‐up sequences are characterized by relatively thin cycle packages with a high percentage of peritidal facies within sequences, recording long‐term accommodation loss. Correlation of long‐term accommodation changes expressed by Fischer plots reveals that during the late Givetian to early Frasnian increased accommodation loss on platforms coincided with increased accommodation gain in interplatform basins. This suggests that movement on faults resulted in the relative uplift of platforms and subsidence of interplatform basins. In the early Frasnian, extensive siliceous deposits in most interplatform basins and megabreccias at basin margins correspond to exposure disconformities on platforms.  相似文献   

4.
In the Causses platform (south‐east France), Late Hettangian to Sinemurian deposits were interpreted previously as shallow‐water carbonate ramp deposits. A new look at these deposits has shown a fault‐controlled mosaic carbonate platform that is different from the carbonate ramp models. Within the platform mosaic, 15 lithofacies have been recognized, which are organized in four facies associations, including peritidal, restricted shallow sub‐tidal, sand dunes and sub‐tidal shelf facies associations. The rapid lateral and vertical facies changes, and the lack of consistent landward or seaward direction indicated by the pattern of facies changes, question the existence of a shoreline suggested by the traditional models for this region. Instead, the facies organization and cycle stacking pattern suggest deposition in a mosaic of intertidal islands between which sub‐tidal restricted or open conditions could coexist in very close proximity. Such a platform mosaic would have been defined by tectonic activities along normal faults which segmented the shallow‐water Causses platform. The facies and facies associations are arranged into metre‐scale, peritidal and sub‐tidal cycles that are also variable. Certain cycles show the same stacking pattern in all the sections and seem to be traceable over tens of kilometres. On the contrary, other cycles cannot be correlated; they are present only in specific sections and have a maximum lateral extension of 1 or 2 km. These metre‐scale cycles stack to form four medium‐scale cycles bounded by surfaces that display sub‐aerial exposure features. Medium‐scale cycles stack into two larger‐scale cycles (tens of metres thick) and are bounded by well‐defined karstic surfaces. Based on their lateral continuity and their stacking pattern, the metre‐scale cycles are controlled probably by high frequency eustatic variations overprinting the topographic irregularities formed by differential subsidence of fault‐bounded blocks. Episodic fault activities may reorganize the topography so that, even if eustatic changes may still be the major control of cycles, the expression and number of cycles could be different. Cycles of medium and large‐scale are interpreted as being allogenic, controlled by changes in eustasy and/or subsidence rates as evidenced by their lateral continuity and the correlations of the large‐scale cycles with third‐order depositional sequences.  相似文献   

5.
Spatial information on lithofacies from outcrops is paramount for understanding the internal dynamics, external controls and degree of predictability of the facies architecture of shallow‐water carbonate‐platform tops. To quantify the spatial distribution and vertical stacking of lithofacies within an outer‐platform shoal‐barrier complex, integrated facies analysis and digital field technologies have been applied to a high‐relief carbonate platform exposed in the Djebel Bou Dahar (Lower Jurassic, High Atlas, Morocco). The outer platform is characterized by subtidal, cross‐bedded, coarse grainstone to rudstone grading into supratidal, pisoidal packstone‐rudstone with tepees that together formed a 350 to 420 m wide shoal‐barrier belt parallel to the margin. This belt acted as a topographic high separating a restricted lagoon from the subtidal, open marine region. Low‐energy tidal flats developed on the protected flank of the barrier facing the lagoon. Lithofacies patterns were captured quantitatively from outcrop and integrated into a digital outcrop model. The outcrop model enabled rapid visualization of field data and efficient extraction of quantitative data such as widths of facies belts. In addition, the spatial heterogeneity was captured in multiple time slices, i.e. during different phases of cyclic base‐level fluctuations. In general, the lateral continuity of lithofacies is highest when relative water depth increased during flooding of the platform top, establishing low‐energy subtidal conditions across the whole platform, and when the accommodation space was filled with tidal flat facies. Heterogeneity increased during deposition of the relief‐building bar facies that promoted spatial diversification of depositional environments during the initial phases of accommodation space creation. Cycles commonly are composed of a thin transgressive tidal flat unit, followed by coated‐grain rudstone bar facies. Lateral to the bar facies, pisoidal‐grainstone beach deposits accumulated. These bar and beach deposits were overlain by subtidal lagoonal facies or would grow through the maximum flooding and highstand. There the bars either graded into supratidal pisoidal facies with tepees (when accommodation space was filled) or were capped by subaerial exposure (due to a sea‐level fall). Modified embedded Markov analysis was used to test the presence of common ordering in vertical lithofacies stacking in a stationary interval (constant depositional mode). Analysis of individual sections did not reveal any ordering, which may be related to the limited thickness of these sections. Composite sections, however, rejected the null hypothesis of randomness. The addition of stratigraphically significant information to the Markov analysis, such as exposure surfaces and lateral dimensions of facies bodies, strengthens the verdict of unambiguous preferential ordering. Through careful quantitative reconstruction of stratal geometry and facies relationships in fully integrated digital outcrop models, accurate depositional models could be established that enhanced the predictability of carbonate sediment accumulation.  相似文献   

6.
《Sedimentology》2018,65(4):1043-1066
Outcrop analogues of the Late Jurassic lower Arab‐D reservoir zone in Saudi Arabia expose a succession of fining‐upward cycles deposited on a distal middle‐ramp to outer‐ramp setting. These cycles are interrupted by erosional scours that incise up to 1·8 m into underlying deposits and are infilled with intraclasts up to boulder size (1 m diameter). Scours of similar size and infill are not commonly observed on low‐angle carbonate ramps. Outcrops have been used to characterize and quantify facies‐body geometries and spatial relationships. The coarse grain size of scour‐fills indicates scouring and boulder transport by debris or hyperconcentrated density flows strengthened by offshore‐directed currents. Longitudinal and lateral flow transformation is invoked to produce the ‘pit and wing’ geometry of the scours. Scour pits and wings erode up to 1·8 m and 0·7 m deep, respectively, and are on average 50 m wide between wing tips. The flat bases of the scours and their lack of consistent aspect ratio indicate that erosion depth was limited by the presence of cemented firmgrounds in underlying cycles. Scours define slightly sinuous channels that are consistently oriented north–south, sub‐parallel to the inferred regional depositional strike of the ramp, suggesting that local palaeobathymetry was more complex than commonly assumed. Weak lateral clustering of some scours indicates that they were underfilled and reoccupied by later scour incision and infill. Rudstone scour‐fills required reworking of material from inner ramp by high‐energy, offshore‐directed flows, associated with storm action and the hydraulic gradient produced by coastal storm setup, to generate erosion and sustain transport of clasts that are generally associated with steeper slopes. Quantitative analysis indicates that these coarse‐grained units have limited potential for correlation between wells as laterally continuous, highly permeable reservoir flow units, but their erosional and locally clustered character may increase effective vertical permeability of the Arab‐D reservoir zone as a whole.  相似文献   

7.
Facies architecture and platform evolution of an early Frasnian reef complex in the northern Canning Basin of north‐western Australia were strongly controlled by syn‐depositional faulting during a phase of basin extension. The margin‐attached Hull platform developed on a fault block of Precambrian basement with accommodation largely generated by movement along the Mount Elma Fault Zone. Recognition of major subaerial exposure and flooding surfaces in the Hull platform (from outcrop and drillcore) has enabled comparison of facies associations within a temporal framework and led to identification of three stages of platform evolution. Stage 1 records initial ramp development on the hangingwall dip slope with predominantly deep subtidal conditions that prevented any cyclic facies arrangements. This stage is characterised by basal siliciclastic deposits and a major deepening‐upward facies pattern that is capped by a sequence boundary towards the footwall (north‐west) and a major flooding surface towards the hangingwall. Stage 2 reflects the bulk of platform aggradation, significant platform growth towards the hangingwall and the development of reef margins and cyclic facies arrangements. Thickening of this stage towards the hangingwall indicates that accommodation was generated by rotation of the fault block and overlying platform. Stage 3 records a major flooding and backstep of the platform margin. The Hull platform illustrates important elements of margin‐attached carbonate platforms in a half‐graben setting, including: (i) prominent, but limited, coarse siliciclastic input that does not have a major detrimental effect on carbonate production near the rift margin in arid to semi‐arid settings; (ii) wedge‐shaped accommodation created by syn‐depositional rotation of fault blocks and tilting of the hangingwall dip slope, resulting in shallow‐water facies and subaerial exposure up‐dip of the rotational axis and deeper water facies down‐dip; and (iii) evolution of a ramp to rimmed shelf, coincident with a sequence boundary–flooding surface, that is accelerated by tilting of the hangingwall dip slope during fault‐block rotation.  相似文献   

8.
Abstract The Infra Krol Formation and overlying Krol Group constitute a thick (< 2 km), carbonate-rich succession of terminal Proterozoic age that crops out in a series of doubly plunging synclines in the Lesser Himalaya of northern India. The rocks include 18 carbonate and siliciclastic facies, which are grouped into eight facies associations: (1) deep subtidal; (2) shallow subtidal; (3) sand shoal; (4) peritidal carbonate complex; (5) lagoonal; (6) peritidal siliciclastic–carbonate; (7) incised valley fill; and (8) karstic fill. The stromatolite-rich, peritidal complex appears to have occupied a location seaward of a broad lagoon, an arrangement reminiscent of many Phanerozoic and Proterozoic platforms. Growth of this complex was accretionary to progradational, in response to changes in siliciclastic influx from the south-eastern side of the lagoon. Metre-scale cycles tend to be laterally discontinuous, and are interpreted as mainly autogenic. Variations in the number of both sets of cycles and component metre-scale cycles across the platform may result from differential subsidence of the interpreted passive margin. Apparently non-cyclic intervals with shallow-water features may indicate facies migration that was limited compared with the dimensions of facies belts. Correlation of these facies associations in a sequence stratigraphic framework suggests that the Infra Krol Formation and Krol Group represent a north- to north-west-facing platform with a morphology that evolved from a siliciclastic ramp, to carbonate ramp, to peritidal rimmed shelf and, finally, to open shelf. This interpretation differs significantly from the published scheme of a basin centred on the Lesser Himalaya, with virtually the entire Infra Krol–Krol succession representing sedimentation in a persistent tidal-flat environment. This study provides a detailed Neoproterozoic depositional history of northern India from rift basin to passive margin, and predicts that genetically related Neoproterozoic deposits, if they are present in the High Himalaya, are composed mainly of slope/basinal facies characterized by fine-grained siliciclastic and detrital carbonate rocks, lithologically different from those of the Lesser Himalaya.  相似文献   

9.
The Murray Supergroup records temperate‐water carbonate deposition within a shallow, mesotrophic, Oligo‐Miocene inland sea protected from high‐energy waves and swells of the open ocean by a granitic archipelago at its southern margin. Rocks are very well preserved and exposed in nearly continuous outcrop along the River Murray in South Australia. Most facies are rich in carbonate silt, contain a background assemblage of gastropods (especially turritellids) and infaunal bivalves, and are packaged on a decimetre‐scale defined by firmground and hardground omission surfaces. Bioturbation is pervasive and overprinted, resulting in rare preservation of physical sedimentary structures. Facies are grouped into four associations (large foraminiferan–bryozoan, echinoid–bryozoan, mollusc and clay facies) interpreted to represent shallow‐water (<50 m) deposition under progressively higher trophic resource levels (from low mesotrophy to eutrophy), and restricted marine conditions from relatively offshore to nearshore regions. A large‐scale shift from high‐ to low‐mesotrophic conditions within lower Miocene strata reflects a change in climate from wet to seasonally dry conditions and highlights the influence terrestrially derived nutrients had upon this shallow, land‐locked sea. Overall, low trophic resource levels during periods of seasonally dry climate resulted in a deepening of the euphotic zone, a widespread proliferation of foraminiferan photozoan fauna and a relatively high carbonate productivity. Inshore, heterozoan facies became progressively muddier and restricted towards the shoreline. In contrast, periods of wet climate led to rising trophic resource levels, resulting in a shallowing of the euphotic zone, a decrease in epifaunal and seagrass cover and widespread development of a mostly heterozoan biota dominated by infaunal echinoids. Rates of carbonate production and accumulation were relatively low. The Murray Basin is best described as an epeiric ramp. Wide facies belts developed in a shallow sea on a low‐angled slope reaching many hundreds of kilometres in length. Grainy shoal and back‐barrier facies were absent. Internally generated waves impinged the sea floor in offshore regions and, because of friction along a wide and shallow sea floor, created a low‐energy expanse of waters across the proximal ramp. Storms were the dominating depositional process capable of disrupting the entire sea floor.  相似文献   

10.
11.
No counterparts to epeiric-sea carbonate ramps are known in present-day environments. This hinders the interpretation of the factors controlling the growth and evolution of these depositional settings. In this study we analyse the facies and geometries of two Jurassic examples both from outcrop study and through computer modelling. This analysis is constrained by two important features of these Oxfordian and Kimmeridgian ramps: firstly, they are very well exposed, allowing accurate reconstruction of a 200-km section from proximal to distal ramp environments, and, secondly, a time framework for correlation, section reconstruction and modelling is provided by a well-defined ammonite biostratigraphy. The modelling results in a synthetic stratigraphy which closely matches the reconstructed cross-sections and, when integrated with the field study, constrains and provides additional quantitative data on the following aspects of carbonate ramp systems. Resedimentation by storms is an important process in maintaining the ramp profile through time. Down-ramp transport distances of between 25 and 40 km are indicated from the distribution of storm beds and shallow-water allochems and from model-matching known stratigraphic thicknesses and geometries. Modelling sediment production within the time constraints from the ammonite biozones indicates that shallow-water carbonate production was 1–2 orders of magnitude less than that predicted for present-day open-marine carbonate platforms. Deeper-water production rates were reduced by lesser amounts. These proportionally higher, outer-ramp production rates also help to maintain ramp geometries through time. The enigmatic slope crest of ramps is shown to result from a combination of higher, shallow-water production and erosion rates, together with loss of accommodation during highstands and high-stillstands in the modelled sea-level curves. The most parsimonious modelling of the two ramp sequences comes from a relative sea-level curve composed of a linear subsidence component superposed by 20- and 100-kyr cycles on a third-order cycle. The third-order cycles and their timing do not correspond to those of the Exxon curve.  相似文献   

12.
Well‐cuttings, wireline logs and limited core and outcrop data were used to generate a regional, three‐dimensional sequence framework for Upper Mississippian (Chesterian), Greenbrier Group carbonates in the Appalachian foreland basin, West Virginia, USA. The resulting maps were used to document the stratigraphic response of the basin to tectonics and to glacio‐eustasy during the transition into ice‐house conditions. The ramp facies include inner ramp red beds and aeolianites, lagoonal muddy carbonates, mid‐ramp ooid and skeletal grainstone shoal complexes, and outer ramp wackestone–mudstone, that grades downslope into laminated silty lime mudstone. The facies make up fourth‐order sequences, a few metres to over 90 m (300 ft) thick. The sequences are bounded along the ramp margin by lowstand sandstones and calcareous siltstones. On the ramp, sequence boundaries are overlain by thin transgressive siliciclastics and aeolianites, and only a few are calichified. Maximum flooding surfaces on the outer ramp lie beneath deeper water facies that overlie lowstand to transgressive siliciclastic or carbonate units. On the shallow ramp, maximum flooding surfaces overlie siliciclastic‐prone transgressive systems tracts, that are overlain by highstand carbonates with significant grainstone units interlayered with lagoonal lime mudstones. The fourth‐order sequences are the major mappable subsurface units; they are bundled into weak composite sequences which are bounded by red beds. In spite of differential subsidence rates across the foreland basin (1 to 3 cm/k.y. up to 25 cm/k.y.), eustatic sea‐level changes controlled regional sequence development. Thrust‐load induced differential subsidence of fault‐blocks, coupled with in‐plane stress, controlled the rapid basinward thickening of the depositional wedge, whose thickness and facies were influenced by subtle structures such as arches trending at high angles as well as parallel to the margin.  相似文献   

13.
Cross‐bedded grainstones on carbonate ramps and shelves are commonly related to the locus of major wave energy absorption such as shorelines, shoals or shelf breaks. In contrast, on the Early Tortonian carbonate platform of Menorca (Balearic Islands), coarse‐grained, cross‐bedded grainstones are found at a distance from the palaeoshoreline where they were deposited below the wavebase. Excellent exposures along continuous outcrops on the sea cliffs of Menorca reveal the depositional profile and three‐dimensional distribution of the different facies belts of the Tortonian ramp depositional system. Basinward from the palaeoshoreline, fan deltas and beach deposits pass into 5‐km‐wide gently dipping bioturbated dolopackstone (inner and middle ramp), then into 12–20°‐dipping dolograinstone/rudstone clinobeds (ramp slope) and, finally, into subhorizontal fine‐grained basinal dolowackestone to dolopackstone (outer ramp). In this Miocene example, coarse‐grained grainstones exist in five different settings other than beach deposits: (1) on the middle ramp, where cross‐bedded grainstones were deposited by currents roughly parallel to the shoreline at 40–70 m estimated water depth and are interbedded with gently dipping bioturbated dolomitized packstones; (2) on the upper slope, where clinobeds are composed mostly of in situ rhodoliths and red‐algae fragments; (3) on the lower slope, as small‐scale bedforms (small three‐dimensional subaqueous dunes) migrating parallel to the slope; (4) at the transition between the lower slope and the outer ramp, where mollusc‐rich and rhodolithic rudstones and grainstones, interbedded in dolomitized laminated wackestones containing abundant planktonic foraminifera, infill slide/slump scars as upslope‐backstepping bodies (backsets); (5) at the toe of the slope, where coarse skeletal grainstones indicate bedform migration parallel to the platform margin, induced by currents at more than 150 m estimated water depth. This Late Miocene example also illustrates how changes in intrabasinal environmental conditions (nutrients and/or temperature) may produce changes in stratal patterns and facies architecture if they affect the biological system. Two depositional sequences compose the Miocene platform on Menorca, where a reef‐rimmed platform prograded onto an earlier distally steepened ramp. The transition from the ramp to the reef‐rimmed platform was effected by an increase in accommodation space caused by ecological changes, promoting a shift from a grain‐ to a framework‐producing biota.  相似文献   

14.
The Oligocene represents a key interval during which coralline algae became dominant on carbonate ramps and luxuriant coral reefs emerged on a global scale. So far, few studies have considered the impact that these early reefs had on ramp development. Consequently, this study aimed at presenting a high‐resolution analysis of the Attard Member of the Lower Coralline Limestone Formation (Late Oligocene, Malta) in order to decipher the internal and external factors controlling the architecture of a typical Late Oligocene platform. Excellent exposures of the Lower Coralline Limestone Formation occurring along continuous outcrops adjacent to the Victoria Lines Fault reveal in detail the three‐dimensional distribution of the reef‐associated facies. A total of four sedimentary facies have been recognized and are grouped into two depositional environments that correspond to the inner and middle carbonate ramp. The inner ramp was characterized by a very high‐energy, shallow‐water setting, influenced by tide and wave processes. This setting passed downslope into an inner‐ramp depositional environment which was colonized by seagrass and interfingered with adjacent areas containing scattered corals. The middle ramp lithofacies were deposited in the oligophotic zone, the sediments being generated from combined in situ production and sediments swept from the shallower inner ramp by currents. Compositional characteristics and facies distributions of the Attard ramp are more similar to the Miocene ramps than to those of the Eocene. An important factor controlling this similarity may be the expansion of the seagrass colonization within the euphotic zone. This expansion may have commenced in the Late Oligocene and was associated with a concomitant reduction in the aerial extent of the larger benthonic foraminifera facies. Stacking‐pattern analysis shows that the depositional units (parasequences) at the study section are arranged into transgressive–regressive facies cycles. This cyclicity is superimposed on the overall regressive phase recorded by the Attard succession. Furthermore, a minor highstand (correlated with the Ru4/Ch1 sequence) and subsequent minor lowstand (Ch2 sequence) have been recognized. The biota assemblages of the Attard Member suggest that carbonate sedimentation took place in subtropical waters and oligotrophic to slightly mesotrophic conditions. The apparent low capacity of corals to form wave‐resistant reef structures is considered to have been a significant factor affecting substrate stability at this time. The resulting lack of resistant mid‐ramp reef frameworks left this zone exposed to wave and storm activity, thereby encouraging the widespread development of coralline algal associations dominated by rhodoliths.  相似文献   

15.
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites axe developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third-order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third-order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third-order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?) HST” (i.e., “condensed section and highstand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence-stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third-order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.  相似文献   

16.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Marine‐connected basins with evaporites occur beneath most extensional continental margins that originated at low‐latitudes and often are of major economic significance. Cyclicity in the evaporite lithofacies reflects the degree of restriction of the basin, overprinted by sea‐level changes, and caused by structural movements in the barrier region, whether by fault‐block rotation, footwall uplift or hanging wall subsidence, in both extensional and compressional basins. The Upper Triassic evaporites of the Ramon section in southern Israel model cyclic sedimentation in such environments. The Mohilla Formation is a carbonate–evaporate–siliciclastic succession of Carnian age that fills a chain of basins extending along the Levant margin from southern Israel to Jordan and Syria. The basins developed in half‐grabens adjacent to normal faults that formed during a period of regional extension. Evaporites of this formation are well‐exposed in outcrops at Makhtesh Ramon, the southernmost of these basins. The M2 Member of the Mohilla Formation is composed of 42 sub‐metre cycles of alternating dolostone, gypsum and calcareous shales. Field and microfacies analysis showed these cycles to conform mostly to restricted shallow and marginal marine environments, spatially limited by the uplifted shoulders of the half‐graben systems. A total of 10 facies types belonging to six depositional environments have been identified. From stacking patterns and analysis of bed to bed change, cycles can be categorized into three groupings: (i) low frequency exposure to exposure cycles that developed under eustatic or climate control; (ii) high frequency deepening/shallowing‐upward cycles, characterized by gradual transitions due to short‐term sea‐level or runoff‐event oscillations possibly referable to orbital forcing; and (iii) high frequency shallowing‐upward cycles, characterized by abrupt transitions, attributable to sporadic tectonic events affecting accommodation space or barrier effectiveness. The way facies and cycling of the sedimentary environments was deciphered in the Mohilla evaporite basin can be used to unravel the genesis of many other evaporite basins with barriers of tectonic origin.  相似文献   

18.
童金南  崔玮霞 《地球科学》2002,27(5):565-569
碳酸盐缓坡区沉积相带宽, 缺乏直观的物理层序界面标志, 但区域上受气候海平面控制的多级岩性旋回发育, 可对比性强, 生物丰富, 因而可借助于旋回地层学和生态地层学方法进行区域露头层序地层研究.通过岩性旋回叠加型式和生境型迁移过程研究, 较好地进行了下扬子区下三叠统露头层序划分, 建立了层序地层格架, 并提出以海侵面为界进行层序划分对于碳酸盐缓坡区露头层序地层研究更有可操作性和实用性.   相似文献   

19.
Stacked stromatoporoid‐dominated biostromes of the Ludlow‐age Hemse Group (Silurian) in eastern Gotland, Sweden, are 0·5–5 m thick and a few tens of metres to >1 km in lateral extent. They form one of the world's richest Palaeozoic stromatoporoid deposits. This study compiles published and new data to provide an overall facies model for these biostromes, which is assessed in relation to possible modern analogues. Some biostromes have predominantly in‐place fossils and are regarded as reefs, but lack rigid frameworks because of abundant low‐profile non‐framebuilding stromatoporoids; other biostromes consist of stromatoporoid‐rich rudstones interpreted here as storm deposits. Variation between these two `end‐members' occurs both between interlayered biostromes and also vertically and laterally within individual biostromes. Such variation produces problems of applying established reef classification terms and demonstrates the need for the development of terminology that recognizes taphonomic destruction of reef fabrics. An approach to such terminology is found in all four categories of a recent biostrome classification scheme that are easily recognized in the Hemse biostrome facies: autobiostromes (>60% in place); autoparabiostromes (a mixture of in‐place and overturned reef‐building organisms, 20–60% in place); parabiostromes (builders are overturned and damaged, <20% in place); and allobiostromes (transported and detrital reef material, nothing in place). These categories provide a broad taphofacies scheme for the Hemse biostromes, which are mostly autoparabiostrome to allobiostrome. The biostromes developed on crinoidal grainstone sheets and expanded laterally across relatively flat substrates in a marine setting of low siliciclastic input. Planar erosion surfaces commonly terminate biostrome tops. Three broadly similar modern analogues are identified, each of which has elements in common with the Hemse biostromes, but none of which is an exact equivalent: (a) laterally expanded and coalesced back‐barrier patch reefs behind the Belize barrier, an area influenced by limited accommodation space; (b) a hurricane‐influenced shelf, interpreted for Grand Cayman, where reef cores consist of rubble and lack substantial framework; the wide distribution of rounded pebbles and cobbles of stromatoporoids in the Hemse biostromes most probably resulted from hurricanes; (c) coral carpets in 5–15 m water depth of the northern Red Sea, where lateral expansion of low‐diversity frames dominated by Porites coral has produced low‐profile biostromes up to 8 m thick and several km long. Such carpets accumulated large amounts of carbonate, with little export, as in the Hemse biostromes, although the latter did not build frameworks because of the nature of growth of the stromatoporoids. The notable lack of algae in the Hemse biostrome facies is also a feature of Red Sea coral carpets; nevertheless, coral carpets are ecologically different. Hemse biostromes lack evidence of a barrier reef system, although this may not be exposed; the facies assemblage is consistent with either a storm/hurricane‐influenced mid‐ to upper ramp or back‐barrier system.  相似文献   

20.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号