首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

2.
Perovskite and melilite crystals from melilitolites of the ultramafic alkaline Gardiner complex (East Greenland) contain crystallised melt inclusions derived from: (1) melilitite; (2) low-alkali carbonatite; (3) natrocarbonatite. The melilitite inclusion (1) homogenisation temperature of 1060 °C is similar to liquidus temperatures of experimentally investigated natural melilitites. The compositions are peralkaline, low in MgO (ca.␣5 wt%), Ni and Cr, and they are low-pressure fractionates of more magnesian larnite-normative ultramafic lamprophyre-type melts of primary mantle origin. Low-alkali carbonatite compositions (2) homogenise at 1060–1030 °C and are compositionally similar to immiscible calcite carbonatite dykes derived from the melilitolite magma. Natrocarbonatite inclusions (3) homogenise between 1030 and 900 °C and are compositionally similar to natrocarbonatite lava from Oldoinyo Lengai. Nephelinitic to phonolitic dykes which are related to the calcite carbonatite dykes, are very Zr-rich and agpaitic (molecular Na2O + K2O/Al2O3 > 1.2) and resemble nephelinites of Oldoinyo Lengai. The petrographic, geochemical and temporal relationships indicate unmixing of carbonatite compositions (ca. 10% alkalies) from evolving melilitite melt and continued fractionation of melilitite to nephelinite. It is suggested that the natrocarbonatite compositions represent degassed supercritical high temperature fluid formed in a cooling body of strongly larnite-normative nephelinite or evolved melilitite. The Gardiner complex and similar melilitolite and carbonatite-bearing ultramafic alkaline complexes are believed to represent subvolcanic complexes formed beneath volcanoes comparable to Oldoinyo Lengai and that the suggested origin of natrocarbonatite may be applied to natrocarbonatites of Oldoinyo Lengai. Received: 18 January 1996 / Accepted: 2 September 1996  相似文献   

3.
Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 – 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform, undepleted and was characterized by a low degree of melting and probable presence of garnet in restite.  相似文献   

4.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

5.
Melt and fluid inclusions were studied in the minerals of Cenozoic olivine melanephelinites from the Chukchi Peninsula, Russia.The rock contain several generations of olivine phenocrysts varying in composition at mg=0.88~0.77.The phenocrysts bear fluid and melt inclusions recording various stages of melt crystallization in volcanic conduits and shallow magma chambers.Primary fluid inclusions are CO_2-dominated with a density of up to O.93 g/cm~3.All fluid inclusions are partially leaked,which is indicated by haloes of tiny fluid bubbles around large fluid inclusions in minerals.Melt inclusions contain various daughter crystals,which were completely resorbed in thermometric experiments at about 1230℃.Assuming that this temperature corresponds to the entrapment conditions of the CO_2 fluid inclusions,the minimum pressure of the beginning of magma degassing is estimated as 800MPa.Variations in the compositions of homogenized silicate melt inclusions indicate that olivine was the earliest crystalline phase followed by clinopyroxene,nepheline and orthoclase.This sequence is in agreement with the mineralogy of the rocks.The melts are strongly enriched in incompatible trace elements and volatiles(in addition to CO_2,high C1,F,and S contents were detected).There are some differences between the compositions of melts trapped in minerals from different samples.Variations in SiO_2,FeO,and incompatible element contents are probably related to melt generations at various levels in a homogeneous mantle reservoir.  相似文献   

6.
This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate–carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate–silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.  相似文献   

7.
The study of melt microinclusions in olivine megacrysts from meimechites and alkali picrites of the Maimecha–Kotui alkali ultramafic and carbonatite province (Polar Siberia) revealed that the melt compositions corrected for loss of olivine due to post-entrapment crystallization of olivine on inclusion walls (differentiates of primary meimechite magma) match well to the composition of nephelinites and olivine melilitites belonging to carbonatite magmatic series. Modeling of fractional crystallization of meimechite magmas results in the high-alkali melt compositions corresponding to the silicate–carbonate liquid immiscibility field. The appearance of volatile-rich melts at the base of magma-generating plume systems at early stages of partial melting can be explained by extraction of incompatible elements including volatiles, by near-solidus melts at low degrees of partial melting, and meimechites are an example of such magmas. Subsequent accumulation of CO2 in the residual melt results in generation of carbonate magma.  相似文献   

8.
Based on experimental and mineralogical data, the model of mantle carbonate-silicate (carbonatite) melts as dominating parental media for natural diamonds was substantiated. It was demonstrated that the compositions of silicate constituents of parental melts were variable and saturated with respect to mantle rocks, namely pyrope peridotite, garnet pyroxenite, and eclogite. Based on concentration contributions and role in diamond genesis, major (carbonate and silicate) and minor (admixture) components were distinguished. The latter components may be both soluble (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble (sulfides, metals, and carbides) in silicate-carbonate melts. This paper presents the results of a study of diamond crystallization in multicomponent melts of variable composition with carbonate components (K2CO3, CaCO3 · MgCO3, and K-Na-Ca-Mg-Fe carbonatite) and silicate components represented by model peridotite (60 wt % olivine, 16 wt % orthopyroxene, 12 wt % clinopyroxene, and 12 wt % garnet) and eclogite (50 wt % garnet and 50 wt % clinopyroxene). Carbonate-silicate melts behave like completely miscible liquid phases in experiments performed under the P-T conditions of diamond stability. The concentration barriers of diamond nucleation (CBDN) in melts with variable proportions of silicates and carbonates were determined at 8.5 GPa. In the peridotite system with K2CO3, CaCO3 · MgCO3, and carbonatite, they correspond to 30, 25, and 30 wt % silicates, respectively, and in the eclogite system, the CBDN is shifted to 45, 30, and 35 wt % silicates. In the silicate-carbonate melts with higher silicate contents, diamond grows on seeds, which is accompanied by the crystallization of thermodynamically unstable graphite. At P = 7.0 GPa and T = 1200−1800°C, we studied and constructed phase diagrams for the multicomponent peridotite-carbonate and eclogite-carbonate systems as a physicochemical basis for revealing the syngenetic relationships between diamond and its silicate (olivine, ortho- and clinopyroxene, and garnet) and carbonate (aragonite and magnesite) inclusions depending on the physicochemical conditions of growth media. The results obtained allowed us to reconstruct the evolution of diamond-forming systems. The experiments revealed similarity between the compositions of synthetic silicate minerals and inclusions in natural diamonds (high concentrations of Na in garnets and K in clinopyroxenes). It was experimentally demonstrated that the formation of Na-bearing majoritic garnets is controlled by the P-T parameters and melt alkalinity. Diamonds with inclusions of such garnets can be formed in alkalic carbonate-silicate (aluminosilicate) melts. A mechanism was suggested for sodic end-member dissolution in majoritic garnets, and garnet with the composition Na2MgSi5O12 and tetragonal symmetry was synthesized for the first time.  相似文献   

9.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

10.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

11.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

12.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

13.
Data obtained on lamprophyres from the carbonatite–volcanic unit in the lower horizon of the Tomtor Massif indicate that the rocks and zoned diopside and kaersutite phenocrysts in them are enriched in incompatible elements more significantly than is typical of alkaline ultramafic rocks of the Maymecha–Kotui and Kola provinces. The concentrations of these elements and their indicator ratios in the cores and intermediate zones of the diopside and kaersutite phenocrysts significantly vary, and this suggests that the minerals might have crystallized from different melts. This is consistent with the earlier conclusions, which were derived from studying melt inclusions, that the phenocrysts crystallized from mixing alkaline mafic melts of sodic and potassic types and different Mg–number which were enriched in the carbonatite component. The cores of the diopside phenocrysts started to crystallize from sodic mafic magma in a magmatic chamber, while the intermediate and outermost zones of this mineral crystallized from mixed sodic–potassic mafic melts. The carbonatite component was separated from the sodic mafic melt at high temperature (>1150°C) during diopside core crystallization. The bulk compositions of the alkaline lamprophyres and of the diopside and kaersutite phenocrysts contain lower normalized concentrations of HREE than LREE. This led us to conclude that the parental sodic and potassic mafic melts were derived from an enriched mantle source material under garnet–facies parameters, as is typical of continental rifts. It is noteworthy that the potassic mafic melt was derived at greater depths and lower degrees of melting of the mantle source than the sodic melt. The iron–rich sodic melt from which the cores of the diopside phenocrysts started to crystallize was enriched in V, REE, Y, and volatile components (H2O, CO2, F, Cl, and S). The onset of carbonate–silicate liquid immiscibility was marked by the redistribution of REE and Y into the carbonatite melt. The potassic, more Mg–rich mafic melt from which the intermediate and outermost zones of the diopside phenocrysts crystallized was enriched in Ti, Nb, Zr, and REE and always remained homogeneous when this mineral crystallized.  相似文献   

14.
A generalized diagram was constructed for the compositions of multicomponent heterogeneous parental media for diamonds of kimberlite deposits on the basis of the mantle carbonatite concept of diamond genesis. The boundary compositions on the diagram of the parental medium are defined by the components of minerals of the peridotite and eclogite parageneses, mantle carbonatites, carbon, and the components of volatile compounds of the C-O-H system and accessory phases, both soluble (chlorides, phosphates, and others) and insoluble (sulfides and others) in carbonate-silicate melts. This corresponds to the compositions of minerals, melts, and volatile components from primary inclusions in natural diamonds, as well as experimental estimations of their phase relations. Growth media for most natural diamonds are dominated by completely miscible carbonate-silicate melts with dissolved elemental carbon. The boundary compositions for diamond formation (concentration barriers of diamond nucleation) in the cases of peridotite-carbonate and eclogite-carbonate melts correspond to 30 wt % peridotite and 35 wt % eclogite; i.e., they lie in the carbonatite concentration range. Phase relations were experimentally investigated at 7 GPa for the melting of the multicomponent heterogeneous system eclogite-carbonatite-sulfide-diamond with a composition close to the parental medium under the conditions of the eclogite paragenesis. As a result, “the diagram of syngenesis” was constructed for diamond, as well as paragenetic and xenogenic mineral phases. Curves of diamond solubility in completely miscible carbonate-silicate and sulfide melts and their relationships with the boundaries of the fields of carbonate-silicate and sulfide phases were determined. This allowed us to establish the physicochemical mechanism of natural diamond formation and the P-T conditions of formation of paragenetic silicate and carbonate minerals and coexistence of xenogenic sulfide minerals and melts. Physicochemical conditions of the capture of paragenetic and xenogenic phases by growing diamonds were revealed. Based on the mantle carbonatite concept of diamond genesis and experimental data, a genetic classification of primary inclusions in natural diamond was proposed. The phase diagrams of syngenesis of diamond, paragenetic, and xenogenic phases provide a basis for the analysis of the physicochemical history of diamond formation in carbonatite magma chambers and allow us to approach the formation of such chambers in the mantle material of the Earth.  相似文献   

15.
The main rock-forming minerals of pyroxenites in the Krestovskaya intrusion in the Maimecha-Kotui alkaline-ultramafic province are Al- and Ti-fassaite and low-Al high-Mg diopside. Both clinopyroxene varieties bear primary inclusions of alkaline-ultramafic melts enriched in incompatible elements, F (up to 0.3–0.4 wt %), and probably also CO2. The homogenization temperatures of the inclusions are approximately equal and lie within the range of 1200–1300° C. However, the melts preserved in the diopside are undersaturated in Si and Al and richer in Fe, Ba, Sr, Na, and incompatible elements than melt inclusions in the fassaite; they are free in H2O (no more than 0.003 wt %); and are close in composition to katungite-mafurite. Melt inclusions in the fassaite are richer in Si, Mg, and Al; contain up to 0.435 wt % H2O; and compositionally approach alkaline picritoids. Melts of such composition cannot be produced by the differentiation of a single parental magma and were most probably derived from different mantle sources. Judging from the high concentrations of incompatible elements and their distribution in the melt inclusions, these sources were localized in the undepleted mantle at various depths (the picritoid melts were derived from a deeper source) and underwent different degrees of partial melting, with garnet and plagioclase remaining in the residue. The coexistence of diopside and fassaite in a single rock can be explained by the concurrent development of magmatic chambers at different depths during rifting, when this process was repeatedly reactivated and it facilitated the arrival of primitive melts derived from different mantle sources into the same magmatic chambers, in which these melts mixed and evolved. These processes probably predetermined the origin of the alkaline-ultramafic carbonatite intrusions and perhaps also the potassic series in the East African Rift.  相似文献   

16.
This paper studies the petrology of K-alkaline lamproite-carbonatite complexes, which are widespread in Siberia. They are exemplified by the Murun and Bilibino massifs in West and Central Aldan. In these massifs, the entire range of differentiates was first found, from K-ultrabasic-alkalic rocks through basic and intermediate ones to alkali granites and unique residual calc-silicate rocks (benstonite Ba-Sr carbonatites and charoite rocks). Also, intrusive equivalents of lamproites occur in these massifs, and the Murun massif was probably formed from highly differentiated lamproite magmas. In many K-alkaline complexes, silicate and silicate-carbonate magma layering takes place. Stages of magmatism are described for both massifs. Binary and ternary petrochemical diagrams exhibit the same compositional trend from early to late rocks.In this paper, lamproites are considered from the chemical point of view; their diagnostic properties are described in terms of chemical and mineral composition. From geological, petrological, and geochemical data, formational analysis of alkaline complexes was performed, four formational types of world lamproites were first identified, and diamond content criteria were developed for them.The carbonatite problem was studied from the petrological point of view, and four formational types of carbonatites were identified using geological, geochemical, and genetic criteria. It has been suggested that for dividing carbonatite complexes into four formational types the following criteria be used: the alkalinity type (Na or K) of alkalic rocks in the complex and the time when the carbonatite liquid separates from silicate melts in different stages of primary magma differentiation. These linked parameters influence the ore content type of carbonatite complexes.A formation model for K-alkaline carbonatite complexes is given, and the Tomtor alkaline carbonatite massif with tuffaceous rare-metal ores is described to prove that they have ore reserves. The geochemistry of C, O, Sr, and Nd isotopes shows that K-alkaline complexes, depending on their geotectonic setting, can originate from three types of mantle sources: depleted mantle, enriched mantle 1 (EM1), and enriched mantle 2 (EM2). It is concluded that ore-bearing ultrabasic-alkaline complexes of lamproites and carbonatites can melt out of different types of mantle, whose composition only slightly influences their ore content. Apparently, the main factors are the low degree of selective mantle melting (less than 1%) and plumes supplying fluid and alkaline components, which stimulate this melting. Later on, the processes important for the accumulation of ore and trace elements are long-term magma differentiation and its layering during crystallization.  相似文献   

17.
L.I. Panina  L.M. Usoltseva 《Lithos》2008,103(3-4):431-444
To find out the reasons responsible for the diversity of igneous rocks forming the alkaline-ultrabasic carbonatite Krestovskiy massif (the Maimecha–Kotui province, Russia) we have studied melt inclusions in clinopyroxene of trachydolerites, porphyric melanephelinites, and tholeiites. It was established that the homogenization temperatures of inclusions in these rocks are rather close: 1140–1180 °C, 1190–1230 °C, and 1150–1210 °C, respectively. Compositions of melt inclusions in clinopyroxenes from different rocks are significantly different. The chemical composition of clinopyroxene of trachydolerites corresponds to that of trachybasalts and their derivatives. The inclusions are enriched in Sr, Ba, P, and S and their total sum of alkalies (at K ≥ Na) is never less than 5–6 wt.%. Inclusions from the rims of clinopyroxene phenocrysts in porphyric melanephelinites are similar in composition also to inclusions in trachydolerites. But in the cores of clinopyroxene phenocrysts the composition of inclusions corresponds to nephelinite melt. The composition of some melt inclusions in the intermediate and cores zones of clinopyroxene from porphyric melanephelinite has high SiO2 (53–55 wt.%), MgO (8–9 wt.%) and a low (1–2 wt.%) total sum of alkalies (at Na ≥ K) and is depleted in Al2O3 (6–7 wt.%), which is similar to the composition of basaltic komatiites. The composition of inclusions in tholeiites is also basic, highly magnesian, and low-alkaline, Sr and Ba are rare to absent. Compared to the inclusions of basaltic komatiite composition, the inclusions in tholeiites are enriched in Al and depleted in Ca, Ti, and P. The melts trapped in clinopyroxenes from different rocks contain low (0.014–0.018 wt.%) water but they are enriched in F: from 0.37 wt.% in nephelinite melts to 0.1–0.06 wt.% in tholeiite and basaltic komatiite melts. Inclusions in all the rocks under study, host clinopyroxene, and the rocks themselves are significantly enriched in incompatible elements (1–2 orders of magnitude relative to the mantle norm). In tholeiites, the partitioning of these elements is rather uniform, while in trachydolerites and especially in melanephelinites it is contrasting with a drastic depletion in HREE relative to LREE, MREE, and HFSE. A conclusion is made that the Krestovskiy massif was formed by no less than three mantle-derived magmas: melanephelinite, tholeiite and basaltic komatiite. Magmas were generated in different magma sources at different depths with various degrees of enrichment in incompatible elements. These magmas were, most likely, dominated by melanephelinite magma. In intermediate chambers this magma differentiated to form derivative melts of nephelinite, trachydolerite–trachyandesite–trachyte compositions. Komatiite-basalt melts were, most likely, derivatives of primitive meimechite magmas.  相似文献   

18.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   

19.
大兴安岭地幔橄榄岩中熔体的多样性及其成因   总被引:1,自引:1,他引:0  
本文报道了大兴安岭第四纪火山岩中的地幔橄榄岩中橄榄石、单斜辉石和斜方辉石颗粒内部熔体产状(囊体、包裹体和反应边)和成分(低硅熔体和高硅熔体)的多样性,初步讨论了不同熔体的成因。低硅熔体囊体是在地幔深部玄武岩浆与橄榄岩中单斜辉石发生交代反应的产物,斜方辉石反应边的高硅熔体是橄榄岩被捕获上升过程中玄武岩浆与斜方辉石反应的产物,高硅熔体包裹体是地幔中存在的交代熔体。  相似文献   

20.
Olivinites of the Krestovskaya Intrusion consist of predominant amount of olivine, and minor Ti-magnetite, perovskite, and clinopyroxene (from single grain to a few vol %). Primary crystallized melt inclusions were found and studied in olivine, perovskite, and diopside of the olivinites. Daughter phases in olivine-hosted melt inclusions are monticellite, perovskite, kalsilite, phlogopite, magnetite, apatite, and garnet andradite. Perovskite-hosted melt inclusions contain such daughter phases as kalsilite, pectolite, clinopyroxene, biotite, magnetite, and apatite, while daughter phases in clinopyroxene-hosted melt inclusions are represented by kalsilite, phlogopite, magnetite, and apatite. According to melt inclusion heating experiments, olivine crystallized from above 1230°C to 1180°C. It was followed by perovskite crystallizing at ≥1200°C and clinopyroxene, at 1170°C. According to analysis of quenched glass of the melt inclusions, the chemical composition of melts hosted in the minerals corresponds to the larnite-normative alkali ultramafic (kamafugite) magma significantly enriched in incompatible elements. The high incompatible element concentrations, its distribution, and geochemical indicator ratios evidenced that the magma was derived by the partial melting of garnet-bearing undepleted mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号