首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
M. Santosh  K. Sajeev   《Lithos》2006,92(3-4):447-464
We report three new localities of corundum and sapphirine-bearing hyper aluminous Mg-rich and silica-poor ultrahigh-temperature granulites formed during Late Neoproterozoic-Cambrian times within the Palghat–Cauvery Shear Zone system in southern India. From petrologic characteristics, mineral chemistry and petrogenetic grid considerations, the peak metamorphic conditions of these rocks are inferred to lie around 950–1000 °C (as suggested by Al in orthopyroxene thermometer) at pressures above 10 kbar (as indicated by the equilibrium orthopyroxene–sillimanite–gedrite ± quartz assemblage). These rocks preserve several remarkable reaction textures, the most prominent among which is the triple corona of spinel–sapphirine–cordierite on corundum, with the whole textural assembly embedded within the matrix of gedrite, suggesting the reaction: Ged + Crn = Spl + Spr + Crd. The formation of sapphirine–sillimanite assemblage/symplectite associated with relict corundum and porphyroblasitc cordierite is explained by the reaction: Crd + Crn = Spr + Sil. The association of sapphirine cordierite symplectite with gedrite–sillimanite assemblage as well as with aluminosilicate boundaries indicates the gedrite consuming reaction: Ged + Sil = Spr + Crd. Extensive growth of sapphirine–cordierite observed on the rim of gedrite porphyroblasts with spinel occurring as relict inclusions within the sapphirine indicates the reaction: Ged + Spl = Spr + Crd. The pressure–temperature (PT) path defined from the observed mineral assemblages and reaction texture is characterized by anticlockwise trajectory, with a prograde segment of initial heating and subsequent deep burial, followed by retrograde near-isothermal decompression. Such an anticlockwise trajectory is being reported for the first time from southern India and has important tectonic implications since these rocks were developed at the leading edge of the crustal block that was involved in collisional orogeny and subsequent extension during the final phase of assembly of the Gondwana supercontinent. We propose that the rocks were subjected to deep subduction and rapid exhumation, and the extreme thermal conditions were attained either through input from underplated mantle-derived magmas, or convective thinning or detachment of the lithospheric thermal boundary layer during or after crustal thickening.  相似文献   

2.
This paper reports an occurrence of medium-pressure granulite facies calc-silicate rocks intercalated with pelitic gneisses in the Higo metamorphic terrane, central Kyushu, Japan, which is classified as a low- P /high- T (andalusite-sillimanite type) metamorphic belt. Three equilibrium stages are recognized in the calc-silicate rock based on reaction textures: M1 stage characterized by an assemblage of porphyroblastic garnet + coarse-grained clinopyroxene + plagioclase included in the clinopyroxene; M2 stage by two kinds of breakdown products of garnet, one is plagioclase + coronitic clinopyroxene within garnet and the other is plagioclase + vermicular clinopyroxene surrounding garnet; and M3 stage by amphibole replacing clinopyroxene. The key assemblage in the calc-silicate rock common to M1 and M2 stages is Grt + Cpx + Pl ± Qtz, which constrains the pressure and temperature ( P – T ) conditions for these stages by Fe–Mg exchange reaction and the two univariant net-transfer reactions: 2Grs + Alm + 3Qtz = 3Hd + 3An or 2Grs + Prp + 3Qtz = 3Di + 3An. The P – T conditions for M1 and M2 stages were estimated to be about 8.4 ± 1.9 kbar and 680 ± 122 °C, and 6.7 ± 1.9 to 8.9 ± 2.2 kbar and 700 ± 130 to 820 ± 160 °C, respectively. Estimates are consistent with an isobaric heating P – T path. The high peak temperature conditions at normal crustal depths and the prograde isobaric heating path probably require heat advection due to melt migration during the high- T metamorphism.  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987112000643   总被引:2,自引:1,他引:1  
Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust.Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block,southern India,and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature(UHT) metamorphism have been reported.Proximal to the UHT rocks are patches and lenses of charnockite(Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss(Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study.The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of~820℃and~9 kbar.Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T(~760℃and~7.5 kbar). which is consistent with the results obtained from geothermobarometry(710—760℃,6.7—7.5 kbar). but significantly lower than the peak temperatures(>1000℃) recorded from the UHT rocks in this locality,suggesting that charnockitization is a post-peak event.The modeling of T versus molar H2O content in the rock(M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opxfree assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%-0.6 mol%.and there is no significant difference in water activity between the two domains.Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid.T-XFe3+(= Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene:Opx is stable at XFe3+ <0.03 in charnockite.while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12.Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid(e.g.,H2O + CH4) during the retrograde stage.  相似文献   

4.
A new occurrence of the rare corundum + quartz assemblage and magnesian staurolite has been found in a gedrite–garnet rock from the Central Zone of the Neoarchean Limpopo Belt in Zimbabwe. Poikiloblastic garnet in the sample contains numerous inclusions of corundum + quartz ± sillimanite, magnesian staurolite + sapphirine ± orthopyroxene, and sapphirine + sillimanite assemblages, as well as monophase inclusions. Corundum, often containing subhedral to rounded quartz, occurs as subhedral to euhedral inclusions in the garnet. Quartz and corundum occur in direct grain contact with no evidence of a reaction texture. The textures and Fe–Mg ratios of staurolite inclusions and the host garnet suggest a prograde dehydration reaction of St → Grt + Crn + Qtz + H2O to give the corundum + quartz assemblage. Peak conditions of 890–930 °C at 9–10 kbar are obtained from orthopyroxene + sapphirine and garnet + staurolite assemblages. A clockwise PT path is inferred, with peak conditions being followed by retrograde conditions of 4–6 kbar and 500–570 °C. The presence of unusually magnesian staurolite (Mg / [Fe + Mg] = 0.47–0.53) and corundum + garnet assemblages provides evidence for early high-pressure metamorphism in the Central Zone, possibly close to eclogite facies. The prograde high-pressure event followed by high- to ultrahigh-temperature metamorphism and rapid uplifting of the Limpopo Belt could have occurred as a result of Neoarchean collisional orogeny involving the Zimbabwe and Kaapvaal Cratons.  相似文献   

5.
The Fe2+–Mg distribution coefficients between sapphirine and spinel:
were experimentally determined at pressures of 9–13 kbar and temperatures of 950–1150 °C using a natural ultrahigh-temperature (UHT) granulite with paragenesis of these minerals from the Napier Complex in East Antarctica [XMg = Mg / (Fe + Mg); XFe = Fe / (Fe + Mg)]. A new sapphirine–spinel geothermometer has been obtained as:

We applied the exchange thermometer to UHT or high-grade metamorphic rocks that were reported from various complexes in the world. If the KD values of 2.63–4.34 obtained from low-Cr mineral pairs such as XCrSpr < 0.016 and XCrSpl < 0.047 were substituted into the equation, their temperature conditions would be estimated as 806–1050 °C at 11 kbar. The XCr means Cr / (Al + Cr(+ Fe3+)). These temperatures are reasonable retrograde or near peak metamorphic condition.  相似文献   


6.
J. V. Owen  J. Dostal 《Lithos》1996,38(3-4):259-270
Quartzofeldspathic rocks of the Gföhl gneiss from the Moldanubian of the Czech Republic span amphibolite-to granulite-facies, and are associated with eclogite. Protomylonitic fabrics related to terminal tectonic emplacement and reworking of the gneiss are common. Some non-mylonitic rocks, however, preserve early, prograde features (e.g., Opx-rimmed Hbl in metabasites), whereas others have characteristics generally associated with near-isothermal decompression (e.g., Pl-Opx moats separating Grt and Qtz in metabasites; Crd ± Spl coronas on Grt and aluminosilicates in metapelites); the unequivocal distinction between prograde and decompressional features in these rocks, however, may not be possible or even justified. For example, some metapelites contain growth-zoned (i.e., rimward increase in XMg) garnets that also record evidence (i.e., rimward decrease in XCa, compensated by the presence of reversely-zoned plagioclase in the same rock) of decompression. In rare instances, eclogitic rocks (P > 11 kbar) interpreted as tectonic enclaves within the gneiss also record mineralogic evidence of decompression (e.g., Crd-Opx-Spr coronas on pyrope). In metapelites, plagioclase-cored coronal garnets with high Prp/Grs ratios (˜ 2.5) record near-isobaric cooling from near the thermal maximum at a relatively shallow but undetermined crustal level.

Unlike Gföhl gneisses elsewhere (e.g., in Austria), the rocks described here do not preserve evidence of extreme metamorphic conditions. Texturally stable Grt-Bt pairs in non-mylonitic samples give Tmax < 750 °C. Pmax is not known, but prograde metamorphism apparently progressed from the kyanite to sillimanite fields, implying P ˜ 8 kbar at the maximum Grt-Bt temperature. At these conditions, dehydration of mafic gneiss occurred in the presence of a CO2-rich (XCO2 ˜ 0.85) pore fluid  相似文献   


7.
Garnet-bearing peridotitic rocks closely associated with eclogite within the Tromsø Nappe of the northern Scandinavian Caledonides show good evidence for prograde metamorphism. Early stages are recognized as inclusions of hornblende and chlorite in the cores of large garnet poikiloblasts. Closer to the garnet rim, clinopyroxene and Cr-poor spinel appear as additional inclusion phases. Four suites of spinel inclusions can be distinguished based on optical properties and chemical composition. The innermost suite (suite 1) has the lowest Cr# and highest Mg#. Further rimward, the spinel inclusions gradually change in composition, with increasing Cr# and decreasing Mg#. Spinel is rare in the matrix, but locally chromitic spinel occurs as larger grains. Garnet poikiloblasts are rimmed by a kelyphite zone consisting of Hbl + Cr-poor Spl or Opx ± Cpx + Cr-poor Spl, and locally an inner zone of Na-rich Hbl + Chl. Matrix assemblage in the garnet-bearing peridotitic rocks is Hbl + Chl + Cpx + Ol ± Cr-rich spinel, defining a strong foliation wrapping around garnets and associated kelyphites. Thin layers of garnet-orthopyroxenite and garnet–hornblende–zoisite–chlorite rocks are presumably coeval with the matrix foliation of the peridotitic rocks.

In dunitic to harzburgitic compositions large undulatory grains of Ol + Opx ± Chl + Spl apparently define the maximum-P conditions. This assemblage is succeeded by a recrystallized assemblage of Ol ± Tlc ± Mgs, which in turn is overgrown by strain-free poikiloblasts of orthopyroxene, indicating a temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

PT estimates for the inclusion suites of clinopyroxene and spinel in garnet clearly indicate garnet growth and spinel consumption in a regime of increasing P. The inner suite (suite 1) apparently was in equilibrium with garnet, clinopyroxene and olivine at 1.40 GPa, 675 °C, whereas included spinel with maximum Cr# (suite 4) indicate 2.40 GPa at 740 °C. Grt + Opx from garnet-orthopyroxenite give 1.5–1.9 GPa at 740–770 °C, and Grt + Hbl + Zo + Chl from a zoisite-rich rock give 1.75 ± 0.25 GPa at 740 ± 30 °C, interpreted to represent recrystallization during uplift. In dunitic to harzburgitic compositions, early Ol + Opx ± Chl + Spl is succeeded by Ol ± Tlc ± Mgs, which in turn is overgrown by neoblasts of strain-free orthopyroxene, indicating temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

The ultramafic rocks in the Tromsø Nappe were locally strongly hydrated before subduction along with associated eclogites and metasedimentary rocks during the early (Ordovician) stages of the Caledonian orogeny.  相似文献   


8.
The interpretation of whether a dated metamorphic zircon generation grew during the prograde, peak or retrograde stage of a metamorphic cycle is critical to geological interpretation. This study documents a case at Aktyuz metamorphic terrain, in the southern of Kokchetav‐North Tianshan belt, involving progressive metamorphic recrystallization of mafic rock to eclogite and associated behavior of zircon. Zircons in eclogites are mainly fine grains (5 to 20 μm), and preferentially concentrated with rutile/ilmenite. They also occur as individual grains or clusters in amphibole coronas of garnet. A few larger grains commonly preserve inherited cores and evidence of dissolution and metamorphic outgrowths. Zircon grains separated from amphibolites show inherited zircons with typically magmatic feature, although this become progressively blurred in response to resorption and recrystallization. Mineral inclusions represent epidote‐amphibolite facies in the prograde metamorphism, and the embayed boundary between recrystallized domains and inherited zircons suggest fluid/melt participation. The metamorphic domains are mainly simple overgrowth around the inherited cores or recrystallization domains. The absence of peak metamorphic mineral inclusions and steep pattern of MREE‐HREE indicate no sufficient garnet formed before the metamorphic zircon overgrowth. A tiny rim with homogeneously bright CL image can be distinguished in most zircons. Amphibole inclusions have similar compositions to those in the coronas of garnets, suggesting a retrograde metamorphic origin. The inherited zircon crystallized at 880‐730 Ma, revealing similar age range to the gneiss in Aktyuz area, whereas metamorphic zircon dates prograde metamorphism at 497.9 ±1.4 Ma. In this case, the bulk Zr budget in rocks will become locked into Zr‐bearing minerals during the mafic magma intrusion, when the inherited zircon melting and resorption. The texture shows that metamorphic zircon grew both in the prograde and retrograde stage, and Zr‐bearing magmatic minerals and rutile/ilmenite are by far the main source of Zr for the two stages, respectively.  相似文献   

9.
Omphacite and garnet coronas around amphibole occur in amphibolites in the Hong'an area, western Dabie Mountains, China. These amphibolites consist of an epidote–amphibolite facies assemblage of amphibole, garnet, albite, clinozoisite, paragonite, ilmenite and quartz, which is incompletely overprinted by an eclogite facies assemblage of garnet, omphacite and rutile. Coronas around amphibole can be divided into three types: an omphacite corona; a garnet–omphacite–rutile corona; and, a garnet–omphacite corona with less rutile. Chemographic analysis for local reaction domains in combination with petrographical observations show that reactions Amp + Ab + Pg = Omp +Czo + Qtz + H2O, and Amp + Ab = Omp ± Czo + Qtz + H2O may lead to the development of omphacite coronas. The garnet–omphacite–rutile corona was formed from the reaction Amp + Ab + Czo + Ilm ± Qtz = Omp + Grt + Rt + H2O. In garnet–omphacite coronas, the garnet corona grew during an early stage of epidote amphibolite facies metamorphism, whereas omphacite probably formed by the reactions forming the omphacite corona during the eclogite facies stage. It is estimated that these reactions occurred at 0.8–1.4 GPa and 480–610 °C using the garnet–clinopyroxene thermometer and omphacite barometer in the presence of albite.  相似文献   

10.
The varying geochemical and petrogenetic nature of A-type granites is a controversial issue. The oxidized, magnetite-series A-type granites, defined by Anderson and Bender [Anderson, J.L., Bender, E.E., 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 23, 19–52.], are the most problematic as they do not strictly follow the original definition of A-type granites, and approach calc-alkaline and I-type granites in some aspects. The oxidized Jamon suite A-type granites of the Carajás province of the Amazonian craton are compared with the magnetite-series granites of Laurentia, and other representative A-type granites, including Finnish rapakivi and Lachlan Fold Belt A-type granites, as well as with calc-alkaline, I-type orogenic granites. The geochemistry and petrogenesis of different groups of A-types granites are discussed with an emphasis on oxidized A-type granites in order to define their geochemical signatures and to clarify the processes involved in their petrogenesis. Oxidized A-type granites are clearly distinguished from calc-alkaline Cordilleran granites not only regarding trace element composition, as previously demonstrated, but also in their major element geochemistry. Oxidized A-type granites have high whole-rock FeOt/(FeOt + MgO), TiO2/MgO, and K2O/Na2O and low Al2O3 and CaO compared to calc-alkaline granites. The contrast of Al2O3 contents in these two granite groups is remarkable. The CaO/(FeOt + MgO + TiO2) vs. CaO + Al2O3 and CaO/(FeOt + MgO + TiO2) vs. Al2O3 diagrams are proposed to distinguish A-type and calc-alkaline granites. Whole-rock FeOt/(FeOt + MgO) and the FeOt/(FeOt + MgO) vs. Al2O3 and FeOt/(FeOt + MgO) vs. Al2O3/(K2O/Na2O) diagrams are suggested for discrimination of oxidized and reduced A-type granites. Experimental data indicate that, besides pressure, the nature of A-type granites is dependent of ƒO2 conditions and the water content of magma sources. Oxidized A-type magmas are considered to be derived from melts with appreciable water contents (≥ 4 wt.%), originating from lower crustal quartz-feldspathic igneous sources under oxidizing conditions, and which had clinopyroxene as an important residual phase. Reduced A-type granites may be derived from quartz-feldspathic igneous sources with a metasedimentary component or, alternatively, from differentiated tholeiitic sources. The imprint of the different magma sources is largely responsible for the geochemical and petrological contrasts between distinct A-type granite groups. Assuming conditions near the NNO buffer as a minimum for oxidized granites, magnetite-bearing granites formed near FMQ buffer conditions are not stricto sensu oxidized granites and a correspondence between oxidized and reduced A-type granites and, respectively, magnetite-series and ilmenite-series granites is not always observed.  相似文献   

11.
New evidence for high-pressure, eclogite facies metamorphism in the crystalline basement of the Tisza Megaunit (southern Hungary) is reported. The retrogressed mafic eclogite forms a small lens in the orthogneiss and it was found in the borehole near Jánoshalma. The carbonated eclogite contains the peak metamorphic assemblage omphacite + garnet + phengite + kyanite + clinozoizite + rutile + K-feldspar + quartz. Omphacite (Xjd0.40–0.41Xdio0.52–0.53Xhd0.05Xaug1.55–2.85) occurs in the matrix and as inclusions in garnet (Xpy0.37–0.38Xgrs0.21–0.22Xalm0.39–0.40Xsps0–0.01Xadr0–0.01) and kyanite. Thermobarometry based on net-transfer reactions between garnet, omphacite, kyanite and phengite yields PT conditions of 710 ± 10 °C and 2.6 ± 0.75 GPa. Retrogression during decompression is manifested by formation of symplectites; the most typical are diopside + plagioclase after omphacite, corundum + spinel + plagioclase after kyanite and biotite + plagioclase after phengite. Carbonatization along the veins of the retrogressed eclogite was probably coeval with formation of these symplectites. At places where carbonate is absent the rock was completely hydrated and retrogressed down to the greenschist facies with the development of actinolite. Similar eclogites together with abundant orthogneisses occur mainly in the eastern parts of the Tisza Megaunit, suggesting the existence of an ancient (possibly Variscan) subduction/accretionary complex.  相似文献   

12.
在滇西鲁甸地区金沙江结合带新发现退变榴辉岩,其在野外呈透镜体状产于石榴子石白云母石英片岩中.利用电子探针及激光拉曼分析发现石榴子石和锆石中残留绿辉石包体.石榴子石及基质中的白云母为多硅白云母(Si(p.f.u)=3.27~3.53),指示岩石经历了高压变质作用过程.石榴子石发育进变质生长成分环带.岩相学及矿物化学特征显示,退变榴辉岩大致经历了进变质角闪岩相、峰期榴辉岩相、早期退变质以及晚期强退变这4个世代矿物组合,各阶段典型的矿物组合依次为Grt+AmpI+Qtz、Grt+Omp+Rt+Qtz+Phe、Pl+Di+AmpⅡ+Ilm+Spn+Qtz、AmpⅢ+Pl+Czo+Ilm+Qtz.该新发现对金沙江结合带复杂的变质演化P-T-t轨迹样式及年代格架、以金沙江洋为代表的整个西南三江地区古特提斯洋-陆俯冲-碰撞-造山的复杂构造演化历史以及微陆块的拼贴机制等关键科学问题的解决提供了极为重要的素材和更多的约束,具有重要的科学意义.   相似文献   

13.
Two impure ultrahigh-pressure (UHP) marbles, a calcite marble with the peak assemblage Grt + Phe + Cpx + Rt + (Arg) and a dolomite marble with the peak assemblage Crn + Chl + Rt + Dol (±Arg), from the same lens from the polymetamorphic complex of the Brossasco-Isasca Unit (BIU) (southern Dora-Maira Massif) have been petrologically investigated and modelled by calculating P – T phase-diagram projections for H2O–CO2 mixed-volatile systems. Thermobarometric data obtained from the calcite marble suggest Alpine peak conditions in the diamond stability field (4.0 GPa at 730 °C), and allow reconstruction of the earlier portion of the Alpine retrograde P – T path, which is characterized by a significant decompression coupled with a moderate and continuous cooling to 650 °C at 2.50 GPa. The modelled fluid compositions at peak conditions point to 0.025 ≤  X (CO2) ≤ 0.10 and X (CO2) ≤ 0.0012 in the calcite marble and dolomite marble, respectively, suggesting fluid heterogeneity at the local scale and an internally buffered fluid evolution of the studied impure marbles. The lack of micro-diamond in the BIU marbles is explained by the very-low X (CO2) values, which favoured relatively high f O2-conditions, preventing the formation of diamond at the UHP peak metamorphic conditions.  相似文献   

14.
苏文  徐树桐 《地球科学》2000,25(2):152-158
通过对大别山北部石榴二辉麻粒岩岩相学、矿物地质温压计和热力学计算, 获得4个主要的变质演化阶段的矿物共生组合、温压条件和相应的水活度条件: (1) 榴辉岩相阶段(M1), 以Cpx (含Jd) +Q +Ru +Gt组合为代表的残留矿物, 并呈包体的形式产于石榴石中, t=612~750℃; (2)麻粒岩相阶段(M2), 以Opx+Cpx +Gt+Q +Ti+Mt矿物组合为特征, 其相应的t =837~887℃, p=1.03~1.25GPa, 水活度为0.718~0.799; (3) 角闪岩相阶段(M3), 矿物组合为Cpx +Gt+Amp +Pl+Mt, t=530~660℃, p=0.85~0.95GPa, 其相应的水活度为0.2 3~ 0.2 4;和(4) 低角闪岩相阶段(M4), 其形成的温压条件为t=495℃, p=0.5 6~ 0.70GPa, 相应的水活度为0.11~ 0.13.石榴二辉麻粒岩变质反应、变质结构、矿物组合及其演化, 不仅受控于形成时的温压条件, 而且与形成时体系中水活度的演化有着密切的成因关系.水活度的演化特征表明, 变质流体在变质作用过程中, 对变质反应温度起着一定的缓冲作用.   相似文献   

15.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   


16.
The Shuanghe ultrahigh-pressure (UHP) slab in the Dabie Mountains consists of layered coesite-bearing eclogite, jadeite quartzite, marble and biotite gneiss, and is fault bounded against hosting orthogneiss. Representative assemblages of eclogite are Grt+Omp+Coe+Rt±Ky±Phn±Mgs; it formed at P>27 kbar and 680–720±50 °C. During exhumation, these UHP rocks experienced multistage retrograde metamorphism. Coesite was overprinted by quartz aggregates, phengite by biotite±muscovite and rutile by titanite. Garnet was successively replaced by a thin rim of Amp, Amp+Pl, and Amp+Ep±Bt+Pl (minor). Omphacite and kyanite were replaced by Amp+Pl±Cpx (or ±Bt) and by Zo+Pl+Ms±Mrg±Bt, respectively. Secondary calcite occurs as irregular pockets in some layers. An outcrop near the UHP slab border is composed of 20 thin, concordant layers of foliated eclogites, amphibolite and gneissic rocks of variable bulk composition. These layers exhibit mineral assemblages and textures transitional from less altered through extensively retrograded eclogite to gneissic rock of low-amphibolite facies through hydration, metasomatism and recrystallization. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions. Retrograde metamorphism of variable extent may be attributed to selective infiltration of retrograde fluids of CO2-rich and low-salinity aqueous, intensity of deformation and mineral resistance to alteration. The fluid phase for retrogression may have occurred either as discontinuous flow along grain boundaries in completely retrograded eclogites, and/or as isolated pockets in extensive or less altered eclogite layers.  相似文献   

17.
The rim-forming reaction quartz + olivine = orthopyroxene is used to investigate the effect of matrix rheology on rim growth rates. Orthopyroxene rim growth around olivine grains in quartz matrix is compared to rim growth around quartz grains in an olivine matrix. At constant P–T , within one single capsule, orthopyroxene rims grow faster around quartz clasts in olivine matrix than around olivine clasts in quartz matrix. Fourier transform infra-red spectra indicate that the entire samples are water saturated because of water adsorption on the reactant grain surfaces. The increased orthopyroxene growth rates in olivine matrix as opposed to quartz matrix are interpreted in terms of matrix rheology, where in the two different matrix-inclusion arrangements the olivine matrix behaves 'softer' and the quartz matrix 'more rigid'. The strain energy associated with accommodation of the negative reaction volume is higher for the quartz than the olivine matrix and reduces the free energy that drives orthopyroxene rim growth. Growth textures in both kinds of orthopyroxene rims indicate that the diffusivity of MgO slightly exceeds the diffusivity of SiO2. The relative mobility of MgO and SiO2 at given P , T , f H2O seems to be controlled by energy minimization during orthopyroxene growth at the compressive Ol/Opx interface. Our experiments provide evidence for two previously overlooked effects relevant to rim growth reactions in metamorphic rocks: (i) diffusivity along chemical potential gradients to reaction sites is a function of rheology and (ii) the relative diffusivity of components during reaction rim or corona growth is a function of local volume changes at the rim's interfaces.  相似文献   

18.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   

19.
蚌埠隆起区位于华北克拉通东南缘,胶—辽—吉造山带的最南端,主体由五河杂岩组成。前人对该地区的研究主要集中于同位素年代学和变质温压条件研究,其中变质P-T条件研究结果差异较大,以压力变化最为显著,对峰期变质P-T条件缺乏统一认识。本文对蚌埠隆起区石榴辉石岩进行了大量的岩相学、矿物化学成分分析,表明该岩石记录了3期变质作用,其中S-M1和S-M2的矿物组合类似为Grt+Cpx+Opx+Amp+Pl+Ilm,S-M3的矿物组合为Cpx+Amp+Pl+Grt (极边窄带)。结合变质温压条件分析和锆石U-Pb年代学分析,本次主要取得以下几点认识:1)石榴辉石岩WS047-1中记录的3期变质作用,温压条件分别为T-M1 = 616 ℃~647 ℃、P-M1 = 1.03~1.08 GPa,T-M2 = 721 ℃~837 ℃、P-M2 = 1.11~1.29 GPa和T-M3 = 531 ℃~607 ℃、P-M3 = 0.81~0.91 GPa,经历了由较高压力的角闪岩相→中-低麻粒岩相→角闪岩相的变质过程;2)据变质温压条件分析知,蚌埠隆起区具有顺时针的P-T轨迹特征,S-M1→S-M2和S-M2→S-M3分别为近等压升温和近等压降温的缓慢过程;3)石榴辉石岩锆石U-Pb年代学结果主要分为4组:1 839±13 Ma、1 925±31 Ma、2 041±55 Ma和2 762±14 Ma,其中峰值变质年代为1.93~1.84 Ga;4)结合温压条件和锆石U-Pb年代学分析结果,本文认为蚌埠隆起区的P-T轨迹与弗朗西斯科型俯冲或大陆碰撞环境的P-T轨迹较为类似,其应与1.93~1.84 Ga华北克拉通东、西陆块的碰撞拼合及胶—辽—吉造山带形成时限基本吻合。本次研究为深入理解华北克拉通的构造演化特征和蚌埠隆起区的变质作用及演化,提供了大量可靠的科学资料。  相似文献   

20.
G. Rebay  B. Messiga 《Lithos》2007,98(1-4):275-291
In the coronitic metagabbroic rocks of the Corio and Monastero metagabbro bodies in the continental Sesia–Lanzo zone of the western Italian Alps, a variety of mineral reactions that testify to prograde conditions from greenschist to eclogite-facies can be recognised. A microstructural and microchemical study of a series of samples characterized by coronitic textures and pseudomorphic replacement of the original igneous minerals has allowed the prograde reactions undergone by the rocks to be established.

In completely eclogitized coronitic samples, paragonite, blue amphibole, garnet, epidote, fine grained jadeite and chloritoid occur in plagioclase microdomains (former igneous plagioclase). The mafic mineral microdomains consist of glaucophane and garnet. Complexly-zoned amphiboles constrain changing metamorphic conditions: cores of pre-Alpine brown hornblende and/or tremolite are preserved inside rims of a sodic–calcic amphibole that are in turn surrounded by a sodic amphibole. The main high-pressure mineral assemblage, as seen in mylonites, involves glaucophane, chloritoid, epidote, garnet ± phengite, ± paragonite. Some layers within the gabbro contain garnet, omphacite, ± glaucophane, and acid dykes crosscutting the gabbro body contain jadeite, quartz, garnet, epidote and paragonite.

The presence of chloritoid-bearing high-pressure assemblages reflects hydration of the gabbros during their pre-Alpine exhumation prior to subduction, as well as the composition of the microdomains operating during subduction. The pressure and temperature conditions of gabbro transformation during subduction are inferred to be 450–550 °C at up to 2 GPa on the basis of the chloritoid-bearing assemblages. The factors controlling the reaction pathway to form chloritoid-bearing high-pressure assemblages in mafic rocks are inferred from these observations.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号