首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We investigated the distribution of δ13C and δ15N of organic matter among benthic communities from the upper estuary of Yura River to offshore of Tango Sea, Japan, to determine spatial variation in utilization of organic matter by benthic communities. The δ13C values of benthic animals ranged from −27 to −15‰ in the upper estuary, −21 to −15‰ in the lower estuary, −20 to −16‰ in the shallow coast (5–10 m depths), −18 to −16‰ in the deep coast (30–60 m depths) and −19 to −15‰ in offshore (100–150 m depths) stations. Adapting the dual isotope values to mixing models, we estimated the relative contributions of potential food sources to the benthos diet. Phytoplankton and macroalgae that intruded the estuary in summer were utilized as alternative food aside from the terrestrial-origin organic matter assimilated by the estuarine benthic consumers. Resuspended benthic microalgae were important source of energy in the shallow coastal stations, while abundant supply of phytodetritus fueled the deep coastal and offshore benthic food webs. Spatial difference in the diet of benthic communities depends largely on the shifts in the primary carbon source. Thus, benthic communities are important link of autochthonous/allochthonous production and secondary production in the continuous river–estuary–marine system.  相似文献   

2.
Mandovi estuary is a tropical estuary strongly influenced by the southwest monsoon. In order to understand, sources and fate of particulate organic nitrogen, suspended particulate matter (SPM) collected from various locations, was analyzed for particulate organic carbon (POC) and particulate organic nitrogen (PON), δ13CPOC, total hydrolysable amino acid enantiomers (l- and d- amino acids) concentration and composition. δ13CPOC values were depleted (−32 to −25‰) during the monsoon and enriched (−29.6 to −21‰) in the pre-monsoon season implying that OM was derived from terrestrial and marine sources during the former and latter season, respectively. The biological indicators such as C/N ratio, d-amino acids, THAA yields and degradation indices (DI) indicate that the particulate organic matter (POM) was relatively more degraded during the monsoon season. Conversely, during the pre-monsoon, the biological indicators indicated the presence of relatively fresh and labile POM derived from autochthonous sources. Amino acids such as alanine, aspartic acid, leucine, serine, arginine, and threonine in monsoon and glutamic acid, glycine, valine, lysine, and isoleucine in pre-monsoon were relatively abundant. Presence of bacterial biomarker, d-amino acids in the SPM of the estuary during both the seasons signifies important contribution of bacteria to the estuarine detrital ON pool. Based on d-amino acid yields, bacterial OM accounted for 16-34% (23.0 ± 6.7%) of POC and 29-75% (47.9 ± 18.7%) of PON in monsoon, and 30-78% (50.0 ± 15%) of POC and 34-79% (51.2 ± 13.3%) of the PON in pre-monsoon in the estuary. Substantial contribution of bacterial-N to PON indicates nitrogen (N) enrichment on terrestrial POM during the monsoon season. Transport of terrestrial POM enriched with bacterial OM to the coastal waters is expected to influence coastal productivity and ecosystem functioning during the monsoon season.  相似文献   

3.
A stable carbon isotope approach was taken to identify potential organic matter sources incorporated into biomass by the heterotrophic bacterial community of Florida Bay, a subtropical estuary with a recent history of seagrass loss and phytoplankton blooms. To gain a more complete understanding of bacterial carbon cycling in seagrass estuaries, this study focused on the importance of seagrass-derived organic matter to pelagic, seagrass epiphytic, and sediment surface bacteria. Particulate organic matter (POM), seagrass epiphytic, seagrass (Thalassia testudinum) leaf, and sediment surface samples were collected from four Florida Bay locations with historically different organic matter inputs, macrophyte densities, and primary productivities. Bulk (observed and those reported previously) and compound-specific bacterial fatty acid δ13C values were used to determine important carbon sources to the estuary and benthic and pelagic heterotrophic bacteria. The δ13C values of T. testudinum green leaves with epiphytes removed ranged from −9.9 to −6.9‰. Thalassia testudinum δ13C values were significant more enriched in 13C than POM, epiphytic, and sediment samples, which ranged from −16.4 to −13.5, −16.2 to −9.6, and −16.7 to −11.0‰, respectively. Bacterial fatty acid δ13C values (measured for br14:0, 15:0, i15:0, a15:0, br17:0, and 17:0) ranged from −25.5 to −8.2‰. Assuming a −3‰ carbon source fractionation from fatty acid to whole bacteria, pelagic, epiphytic, and sediment bacterial δ13C values were generally more depleted in 13C than T. testudinum δ13C values, more enriched in 13C than reported δ13C values for mangroves, and similar to reported δ13C values for algae. IsoSource mixing model results indicated that organic matter derived from T. testudinum was incorporated by both benthic and pelagic bacterial communities, where 13–67% of bacterial δ13C values could arise from consumption of seagrass-derived organic matter. The IsoSource model, however, failed to discriminate clearly the fraction of algal (0–86%) and mangrove (0–42%) organic matter incorporated by bacterial communities. These results indicate that pelagic, epiphytic, and sediment surface bacteria consumed organic matter from a variety of sources. Bacterial communities incorporated consistently seagrass-derived organic matter, the dominant macrophyte in Florida Bay, but seagrass δ13C values alone could not account fully for bacterial δ13C values.  相似文献   

4.
Human encroachment on the coastal zone has led to concern about the impact of anthropogenic nitrogen (N) on estuarine and continental shelf waters. Western North Atlantic watershed budgets suggest that the export of human-derived N from estuaries to shelf waters off the east coast of the US may be significant; however, models based on water inputs and estimates of upwelling of deepwater nutrients to surface waters of the mid-Atlantic bight indicate that estuarine N may be a relatively minor component of the overall shelf N budget. Stable N isotope ratios could provide a means to assess the relative input of anthropogenic N to shelf waters, particularly since dissolved N from human sources has elevated δ15N values (range: 7–30‰). We collected particulate material from surface shelf waters off the US east coast from 2000 to 2005 at near-shore sample sites proximal to the mouth of six estuaries and corresponding sites farther offshore. Near-shore (mean 33.7 km from estuary mouth) δ15N values ranged from 5.5 to 7.7‰ Offshore values (mean 92.4 km from estuary mouth) were consistently lower than near-shore sites (average 4.7 ± 1.0‰ versus 6.8 ± 1.1‰), suggesting different N sources to near and offshore stations. Near-shore regions are often more productive, as mean monthly chlorophyll-a concentrations from the sea-viewing wide field-of-view sensor (SeaWiFS) were significantly higher at near-shore sites near the mouth of three of the six estuaries. A mass balance using a concentration-dependent mixing model with chlorophyll-a concentrations as a surrogate for dissolved inorganic nitrogen can account for all of the nitrogen at near-shore sites south of Cape Cod with estuarine nitrogen estimated to contribute 45–85% of the nitrogen to the near-shore surface particulate material. Our results support the hypothesis that estuarine nitrogen is influencing continental shelf ecosystems, and also provide preliminary evidence of the spatial extent of its influence on shelf waters in the mid-Atlantic bight.  相似文献   

5.
Carbon and nitrogen stable isotope ratios (13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ13C signatures ranging between −29.2 and −19.5‰ and δ15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (−28.6 to −17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.  相似文献   

6.
Preservation of organic matter in estuarine and coastal areas is an important process in the global carbon cycle. This paper presents bulk δ13C and C/N of organic matter from source to sink in the Pearl River catchment, delta and estuary, and discusses the applicability of δ13C and C/N as indicators for sources of organic matter in deltaic and estuarine sediments. In addition to the 91 surface sediment samples, other materials collected in this study cover the main sources of organic material to estuarine sediment. These are: terrestrial organic matter (TOM), including plants and soil samples from the catchment; estuarine and marine suspended particulate organic carbon (POC) from both summer and winter. Results show that the average δ13C of estuarine surface sediment increases from −25.0 ± 1.3‰ in the freshwater environment to −21.0 ± 0.2‰ in the marine environment, with C/N decreasing from 15.2 ± 3.3 to 6.8 ± 0.2. In the source areas, C3 plants have lower δ13C than C4 plants (−29.0 ± 1.8‰ and −13.1 ± 0.5‰ respectively). δ13C increases from −28.3 ± 0.8‰ in the forest soil to around −24.1‰ in both riverbank soil and mangrove soil due to increasing proportion of C4 grasses. The δ13CPOC increases from −27.6 ± 0.8‰ in the freshwater areas to −22.4 ± 0.5‰ in the marine-brackish-water areas in winter, and ranges between −24.0‰ in freshwater areas and −25.4‰ in brackish-water areas in summer. Comparison of the δ13C and C/N between the sources and sink indicates a weakening TOM and freshwater POC input in the surface sedimentary organic matter seawards, and a strengthening contribution from the marine organic matter. Thus we suggest that bulk organic δ13C and C/N analysis can be used to indicate sources of sedimentary organic matter in estuarine environments. Organic carbon in surface sediments derived from anthropogenic sources such as human waste and organic pollutants from industrial and agricultural activities accounts for less than 10% of the total organic carbon (TOC). Although results also indicate elevated δ13C of sedimentary organic matter due to some agricultural products such as sugarcane, C3 plants are still the dominant vegetation type in this area, and the bulk organic δ13C and C/N is still an effective indicator for sources of organic matter in estuarine sediments.  相似文献   

7.
Nitrogen isotope compositions of particulate organic matter and nitrate were analyzed for seawater sampled at five stations at the Alaskan Gyre, Western Subarctic Gyre and East China Sea, focusing on the samples from the surface to 5000 m water to characterize the nitrogen cycling in the subarctic North Pacific Ocean and its marginal sea. The 15N of particulate organic matter showed little agreement with a conceptual closed model that interprets isotopic variation as being caused by isotope discrimination on nitrate utilization. The 15N and 13C of particulate organic matter varied with the water depth. A correlation between isotope compositions and C/N elemental ratio was found generally at all stations, although some irregular data were also found in deep layers. We developed a hypothetical nitrogen balance model based on N2 fixation and denitrification in seawater and attempted to apply it to distinguish nutrient cycling using both 15N-NO3 and N* variation in seawater. This model was applied to the observed data set of 15N-NO3 and N* in the North Pacific water and estimated the 15N-NO3 of primordial nitrate in the North Pacific deep water as 4.8. The North Pacific intermediate water for all stations showed similar 15N-NO3 and N* values of 6 and –3 µmol/kg, respectively, suggesting a similar nitrogen biogeochemistry. In the East China Sea, analysis showed evidence of water exchange with the North Pacific intermediate water but a significant influence of nitrogen from the river runoff was found in depths shallower than 400 m.  相似文献   

8.
Carbon and nitrogen stable isotope composition of a range of organisms collected from two intermittently connected floodplain pools in the Ross River estuary were analysed to assess the extent to which carbon fixed by terrestrial wetland producers is incorporated into adjacent aquatic food webs. The two pools differed in surrounding vegetation with one surrounded by mangroves and the other by the salt couch Sporobolus virginicus. At both pools, animals showed differences in δ13C, indicating differences in sources of carbon. Since δ13C values of C3 mangroves (−29.7 to −26.3‰) were very different from those of the C4 salt couch (−16.3 to −15.4‰), it was possible to determine the importance of terrestrial wetland producers by comparing isotope values of consumers between sites, in a species by species approach. Most animal species collected showed lower δ13C at the mangrove pool than at the Sporobolus pool, which indicates a greater incorporation of mangrove carbon at the mangrove pool. However, the animals’ isotopic shifts were also similar to that shown by epiphytes, and hence the differences in animal δ13C could also be a result of a dependence on these producers. The IsoSource model was useful to clarify this question, indicating that mangrove and salt marsh material was a crucial contributor to the diet of several fish and invertebrate species at both sites, indicating that carbon of terrestrial origin is incorporated in the estuarine food web.  相似文献   

9.
The temporal and spatial variability of dissolved inorganic phosphate (DIP), nitrogen (DIN), carbon (DIC) and dissolved organic carbon (DOC) were studied in order to determine the net ecosystem metabolism (NEM) of San Diego Bay (SDB), a Mediterranean-climate lagoon. A series of four sampling campaigns were carried out during the rainy (January 2000) and the dry (August 2000 and May and September 2001) seasons. During the dry season, temperature, salinity and DIP, DIC and DOC concentrations increased from oceanic values in the outer bay to higher values at the innermost end of the bay. DIP, DIC and DOC concentrations showed a clear offset from conservative mixing implying production of these dissolved materials inside the bay. During the rainy season, DIP and DOC increased to the head, whereas salinity decreased toward the mouth due to land runoff and river discharges. The distributions of DIP and DOC also showed a deviation from conservative mixing in this season, implying a net addition of these dissolved materials during estuarine mixing within the bay. Mass balance calculations showed that SDB consistently exported DIP (2.8–9.8 × 103 mol P d−1), DIC (263–352 × 103 mol C d−1) and DOC (198–1233 × 103 mol C d−1), whereas DIN (5.5–18.2 × 103 mol N d−1) was exported in all samplings except in May 2001 when it was imported (8.6 × 103 mol N d−1). The DIP, DIC and DOC export rates along with the strong relationship between DIP, DIC or DOC and salinity suggest that intense tidal mixing plays an important role in controlling their distributions and that SDB is a source of nutrients and DOC to the Southern California Bight. Furthermore, NEM ranged from −8.1 ± 1.8 mmol C m−2 d−1 in September to −13.5 ± 5.8 mmol C m−2 d−1 in January, highlighting the heterotrophic character of SDB. In order to explain the net heterotrophy of this system, we postulate that phytoplankton-derived particulate organic matter, stimulated by upwelling processes in the adjacent coastal waters, is transported into the bay, retained and then remineralized within the system. Our results were compared with those reported for the heterotrophic hypersaline coastal lagoons located in the semi-arid coast of California–Baja California, and with those autotrophic hypersaline systems found in the semi-arid areas of Australia. We point out that the balance between autotrophy and heterotrophy in inverse estuaries is dependent on net external inputs of either inorganic nutrients or organic matter as it has been indicated for positive estuaries.  相似文献   

10.
Carbon and Nitrogen stable isotopes and stomach contents analyses were used to investigate an estuarine fish food web and identify the contribution of these two methods to the knowledge and understanding of the food web's structure and its functioning. The nine most abundant fish species during the warm period in the Gironde estuary (southwest France, Europe) are examined. Observation of the stomach contents reflects a variety of feeding modes between fish species that consume a diverse assortment of prey, with limited dietary overlap. Nevertheless, when regarding the whole fish community, few prey species dominate the stomach contents. Nitrogen isotope ratios indicate a high intraspecific variability inducing an interspecific covering of the signatures. However, a tendency to δ15N enrichment according to the trophic position of the species studied was observed. Fish assemblages show a trend towards enrichment of their carbon isotopic signatures from the upper estuary (−20.8 ± 1.8‰) towards the lower estuary (−18.3 ± 1.6‰). But whatever the capture zone considered, most of the individual δ13C values for each fish analysed are comprised between −22 and −16‰. Only few specimens, belonging to migratory amphihaline species, have significantly lighter values.  相似文献   

11.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

12.
Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ13C, δ15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp (Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern (Sternula albifrons) and Little Egret (Egretta garzetta), was inferred trough a triple-isotope (δ13C, δ15N and δD) Bayesian mixing model. Isotopic trends for fish δ15N and δD across the salinity gradient followed the equations: δ15N = e(1.1 + 47.68/Salinity) and δD = −175.74 + Salinity + Salinity2; whereas fish δ13C increased as salinity rose (δ13C = −10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ13C for salinities <60 = −5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.  相似文献   

13.
The 13C signature of forty-five macroalgal species from intertidal zones at Cádiz Bay was analysed in order to research the extension of diffusive vs. non-diffusive utilisation of dissolved inorganic carbon (DIC) and to perform a comparison with data published for other bio-geographic regions. The ∂13C values ranged from −6.8‰ to −33‰, although the span of variation was different depending on the taxa. Thus, ∂13C for Chlorophyta varied from −7‰ (Codium adhaerens) to −29.6‰ (Flabellia petiolata), while all the Phaeophyceae (excepting Padina pavonica with ∂13C higher than −10‰) had values between −10‰, and −20‰. The widest variation range was recorded in Rhodophyta, from values above −10‰ (Liagora viscida) to values lower than −30‰ obtained in three species belonging to the subclass Rhodymeniophycidae. Accordingly, the mean ∂13C value calculated for red algae (−20.2‰) was significantly lower than that for brown (−15.9‰) and green algae (−15.6‰). Most of the analysed red algae were species inhabiting crevices and the low intertidal fringe which explains that, on average, the shaded-habitat species had a ∂13C value lower than those growing fully exposed to sun (i.e. in rockpools or at the upper intertidal zone). The comparison between the capacity for non-diffusive use of DIC (i.e. active or facilitated transport of HCO3 and/or CO2) and the ∂13C values reveals that values more negative than −30‰ indicate that photosynthesis is dependent on CO2 diffusive entry, whereas values above this threshold would not indicate necessary the operation of a non-diffusive DIC transport mechanism. Furthermore, external carbonic anhydrase activity (extCA) and ∂13C values were negatively correlated indicating that the higher the dependence of the photosynthesis on the CO2 supplied from HCO3 via extCA, the lower the ∂13C in the algal material. The comparison between the ∂13C values obtained for the analysed species and those published for species inhabiting other bio-geographic areas (warm-temperate, cold and polar) suggests that globally (at least for the red and brown algae) the non-diffusive entry of DIC is more widely spread among the species from Cádiz Bay than among those of polar regions. If it is assumed that non-diffusive use of DIC implies saturation of photosynthesis at the present-day CO2 concentration in seawater, our data indicate that the potential impact of the acidification on photosynthesis in the seaweed communities will be different depending on the latitude.  相似文献   

14.
One hundred and ten carbon and nineteen strontium isotopic values of outcropping Cambrian Series 2 and Series 3 carbonate rocks in the Penglaiba section of the Keping area were analyzed. Effective isotopic data with little influence of diagenesis were used to address the global correlation. The δ13C values exhibit two major positive excursions (peaking at 3.1‰ and 3.3‰) and three major negative excursions (peaking at −3.0‰, −4.2‰ and −3.2‰). The carbon isotope excursions (peaking at −3.0‰ and −4.2‰) across the Cambrian Series 2-Series 3 boundary show good correlations with similar variations reported in Siberia, Laurentia, North China and South China. In contrast, the other three carbon isotope excursions (peaking at 3.1‰, 3.3‰ and −3.2‰) do not have a fairly good global correlation because of the lack of biostratigraphic data. With respect to the 87Sr/86Sr ratios, they show good correlation with those reported for Laurentia, and further support the global δ13C comparison. On the basis of these new data, it is showed that the combination of δ13C curves and 87Sr/86Sr variations serves as a powerful tool for correlation and subdivision of Cambrian strata in the Tarim Basin of northwest China, and provides new data for global correlation.  相似文献   

15.
Variations in elemental and isotopic ratios of suspended particulate matter (SPM) were investigated in the Guayas River Estuary Ecosystem (GREE) that empties into the Gulf of Guayaquil, Ecuador. Detritus in the system was identified on the basis of extremely high carbon:chlorophyll aratios (>1000). This material had mean δ13C of −26·4±0·3, δ15N of +4·8±0·2, and (C:N)atomicof 14·1±0·9. The isotopic data were comparable to measurements reported for fresh and degrading mangrove leaves, whereas the elemental ratio was comparatively enriched in nitrogen. Isotope measurements of SPM throughout the GREE were more similar to values for riverine material and detritus compared with that for the coastal end-member. Values indicative ofin situproduced algae, sewage and shrimp pond effluent were only found at selected sites. Bacterial bioassays, which were used to document potential sources of dissolved organic matter in the GREE, were isotopically similar to SPM. This correspondence coupled with the relatively low (C:N)aof SPM could be explained by bacterial immobolization of nitrogen onto detritus. Finally, tidal variations of (C:N)aand δ13C at a brackish mangrove site were similar in magnitude to spatial variations encountered throughout the GREE. Based on these results, the authors caution that care must be taken when samples are taken for food-web studies in these systems.  相似文献   

16.
The spectral absorption properties of chromophoric dissolved organic matter (CDOM) and their distributions in two Chinese estuaries, the Yangtze River Estuary and the Jiulong River Estuary, were studied during August 2003 (wet season) and during different seasons between 2003−2005, respectively. The CDOM concentrations (a355) of fresh end members in the Jiulong River Estuary varied seasonally, while its quality remained relatively stable. However, the a355 of the marine end members exhibited less variability. Application of a conservative mixing model indicated that CDOM behaved conservatively in the Yangtze River Estuary. No photobleaching removal was observed at high salinity region of this estuary. Although CDOM showed conservative behavior for many cruises in the Jiulong River Estuary, there was evidence for removal in the low salinity regions during some cruises. Laboratory mixing experiments and a salt addition experiment suggested that particle sorption of CDOM maybe the possible reason for the removal. These results showed that absorption properties of CDOM can be used as a tool to observe the quantitative and qualitative dynamics of DOM during estuarine mixing.  相似文献   

17.
This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck – a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2−BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3) and nitrite (NO2) were simulated using a benthic model that accounted for transport and biogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3 (−0.35 mmol m−2 d−1 of NO3), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3 reduction to NO2 by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m−2 d−1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2 fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m−2 d−1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3 in the bottom water (NO3BW). Higher O2−BW decreases DNRA and denitrification but stimulates both anammox and the contribution of anammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.  相似文献   

18.
Isotopic analyses of nitrate by the denitrifier method, and indeed by many other analytical methods, do not discriminate between nitrate and nitrite. For samples containing both chemical species, accurate isotopic analysis of nitrate requires either removal of nitrite or independent isotopic analysis of nitrite and subtraction of its contribution to the mixed isotopic signal. This study evaluates the application of a variety of available analytical approaches to the isotopic analysis of mixed nitrate and nitrite solutions, with the goal of producing accurate coupled isotopic analyses of both nitrate and nitrite. These methods are tested on mixtures of standard solutions of nitrate and nitrite, and then applied to the coupled δ15N and δ18O analyses of nitrate and nitrite in waters of the Eastern Tropical North Pacific (ETNP). Results from standard mixtures show that even for extreme values of nitrate and nitrite δ15N and δ18O, both nitrite removal by ascorbate and nitrite isotopic analysis and subtraction from the mixed isotopic signal yield nitrate δ15N and δ18O values that are close to the expected values. Application of these analyses to samples from the ETNP yielded δ15NNO3 and δ18ONO3 values as high as 21‰ vs. AIR and 19‰ vs. VSMOW, respectively. Conversely, very low δ15N values were observed in nitrite, with values ranging from − 7.2 to − 18.5‰ vs. AIR. Removal of nitrite from ETNP samples thus revealed differences of up to 5‰ between NO3- and NO2- + NO3- for both δ15N and δ18O. Moreover, the δ15N offset between co-occurring nitrate and nitrite is greater than expected from the action of denitrification alone and may provide a unique constraint on the processes involved in the cycling of nitrite in and around oxygen deficient zones. Finally, subtraction of the nitrite δ15N and δ18O from ETNP samples allows the extension of the Δ(15,18) tracer into suboxic regions containing nitrite. The magnitude and distribution of Δ(15,18) in these samples suggests an important role for nitrite reoxidation in nitrate isotope variations.  相似文献   

19.
The aim of this study was to distinguish between sources of the complex variety of Marennes-Oléron Bay suspended particulate organic matter (SPOM) contributing to the tropho-dynamics of the Marennes-Oléron oyster farming bay. Basic biomarkers (Chl a, C/N and POC/Chl a ratios), carbon and nitrogen stable isotopes from SPOM were analyzed and the microalgae community was characterized. The sampling strategy was bimonthly from March 2002 to December 2003; samples were taken from an intertidal mudflat. Four main sources contributed to the SPOM pool: terrigenous input from rivers, neritic phytoplankton, resuspended microphytobenthos and periodic inputs from intertidal Zostera noltii meadows. Seasonal fluctuations were observed in both years of the study period: (1) SPOM collected in the spring of 2002 (δ13C = −25‰ to −23‰) was mainly composed of fresh estuarine inputs; (2) SPOM from the summer and fall of 2002 and 2003 was predominantly neritic phytoplankton (δ13C = − 22‰ to −19‰); (3) SPOM from the winter of 2002, spring of 2003 and winter of 2003 (δ13C = −21 to −23‰) was composed of a mixture of decayed terrigenous river inputs and pelagic phytoplankton, which was predominantly resuspended microphytobenthos. In the summer of 2003—the warmest summer on record in southern France and Europe—SPOM was particularly enriched for 13C, with δ13C values ranging from −14‰ to −12‰. Pulses in δ13C values, indicative of 13C-enriched decaying materials, extended into the fall. These were attributed to benthic intertidal inputs, including both resuspended microphytobenthos and Z. noltii detritus. Changes in SPOM sources in Marennes-Oléron Bay may lead to differences in the quality of the trophic environment available for reared oysters.  相似文献   

20.
To assess the potential of stable isotope ratios as an indicator of fish migration within estuaries, stable isotope ratios in important zooplankton species were analyzed in relation to estuarine salinity gradients. Gut contents from migratory juveniles of the euryhaline marine fish Lateolabrax japonicus were examined along the Chikugo River estuary of the Ariake Sea, which has the most developed estuarine turbidity maximum (ETM) in Japan. Early juveniles in March and April preyed primarily on two copepod species; Sinocalanus sinensis at lower salinities and Acartia omorii at higher salinities. Late juveniles (standard length > 40 mm) at lower salinities preyed exclusively on the mysid Acanthomysis longirostris until July and complementarily on the decapod Acetes japonicus in August. These prey species were collected along the estuary during the spring–summer seasons of 2003 and 2004, and their carbon and nitrogen stable isotope ratios (δ13C and δ15N) were evaluated. The δ13C values of prey species were distinct from each other and were primarily depleted within and in close proximity to the ETM (salinity < 10); S. sinensis (−26.6‰) < Acanthomysis longirostris (−23.3‰) < Acartia omorii (−21.1‰) < Acetes japonicus (−18.5‰). The overall gradient of δ13C with salinity occurred for all prey species and showed minor temporal fluctuations, while it was not directly influenced by the δ13C values in particulate organic matter along the estuary. In contrast to δ13C, the δ15N values of prey species did not exhibit any clear relationship with salinity. The present study demonstrated that δ13C has the potential for application as a tracer of fish migration into lower salinity areas including the ETM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号