首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We measured the absorption coefficients of suspended particles (ap(λ)) during three cruises from coastal waters to open ocean in the northern South China Sea (NSCS). The absorption contributions of phytoplankton (aph(λ)) and nonalgal particles (aNAP(λ)) were determined using the methanol extraction method. Based on the dataset of about 360 samples, we examined the spectral relationships of the particle absorption coefficients. The results show that ap(λ) spectra are well linearly correlated with ap(443) over the wavebands between 420–650 nm; aph(λ) could be well expressed as the second-order quadratic equations of aph(443) among the blue-green wavebands, and aNAP(λ) follows the general exponential function. Based on these spectral relationships, a model was proposed for partitioning the total particulate absorption coefficients into the contributions of phytoplankton and nonalgal particles using the nonlinear optimization method. The model was validated by comparing the computed results with in situ absorption coefficients. In some wavebands, such as 412 nm, 443 nm, 490 nm and 683 nm, we obtained good correlations with the percentage root mean square error (RMSE) values being controlled within 25% and the slopes being closer to 1.0. For samples from coastal waters, the discrepancy was a little large, which might be due to the higher absorption contributions from certain pheopigments. Overall, this model provides us much insight into phytoplankton absorption retrieval from in situ measurements and remote sensing ocean color data.  相似文献   

2.
Alterations in sea ice and primary production are expected to have cascading influences on the food web in high Arctic marine ecosystems. This study spanned four years and examined the spring phytoplankton production bloom in Disko Bay, West Greenland (69°N, 53°W) (using chlorophyll a concentrations as a proxy) under contrasting sea ice conditions in 2001 and 2003 (heavy sea ice) and 2002 and 2004 (light sea ice). Satellite-based observations of chlorophyll a, sea ice and sea surface temperature were used together with in situ depth profiles of chlorophyll a fluorescence collected at 24 sampling stations along the south coast of Disko Island (5-30 km offshore) in May 2003 and 2004. Chlorophyll a and sea surface temperatures were also obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS: EOS-Terra and AQUA satellites) between March 2001 and July 2004. Daily SMMR/SSMI sea ice data were obtained in the same years. An empirical regional algorithm was developed to calibrate ratios of remotely sensed measurements of water leaving radiance with in situ chlorophyll a fluorescence. The optimal integration depth was 0-4 m, explaining between 70% and 91% of the variance. The spatial development of the phytoplankton bloom showed that the southwestern corner of the study area had the earliest and the largest spring phytoplankton bloom. The eastern part of Disko Bay, influenced by meltwater outflow from the glaciers, shows no signs of an early phytoplankton bloom and followed the general pattern of an accelerated bloom soon after the disappearance of sea ice. In all four years the coupling between phytoplankton and sea ice was bounded by average open water between 50% and 80%, likely due to the combined availability of light and stable open water. The daily incremental growth in both mean chlorophyll a density (chlorophyll a per volume water, μg l−1) and abundance (density of chlorophyll a extrapolated to ice free areas, tons) estimated by linear regression (chlorophyll a vs. day) between 1 April and 15 May was highest in 2002 and 2004 (light ice years) and lowest in 2001 and 2003 (heavy ice years). In years with late sea ice retreat the chlorophyll a attained only slightly lower densities than in years with early sea ice retreat. However, the abundance of chlorophyll a in light ice years was considerably larger than in heavy ice years, and there was an obvious effect of more open water for light-induced stimulation of primary production. This observation demonstrates the importance of estimating chlorophyll a abundance rather than density in sea ice covered areas. This study also presents the first regional calibration of MODIS chlorophyll a data for Arctic waters.  相似文献   

3.
Satellite image studies and recent in situ sampling have identified conspicuous phytoplankton blooms during spring and summer along the Patagonia shelf-break front. The magnitudes and spectral characteristics of light absorption by total particulate matter (phytoplankton and detritus) and colored dissolved organic matter (CDOM) have been determined by spectrophotometry in that region for spring 2006 and late summer 2007 seasons. In spring, phytoplankton absorption was the dominant optical component of light absorption (60–85%), and CDOM showed variable and important contributions in summer (10–90%). However, there was a lack of correlation between phytoplankton biomass (chlorophyll-a concentration or [chl a]) and the non-algal compartment in both periods. A statistically significant difference was found between the two periods with respect to the CDOM spectral shape parameter (Scdom), with means of 0.015 (spring) and 0.012 nm?1 (summer). Nonetheless, the mean Scdm values, which describe the slope of detritus plus CDOM spectra, did not differ between the periods (average of 0.013 nm?1). Phytoplankton absorption values in this work showed deviations from mean parameterizations in previous studies, with respect to [chl a], as well as between the two study periods. In spring, despite the microplankton dominance, high specific absorption values and large dispersion were found (a*ph(440)=0.04±0.03 m2 mg [chl a]?1), which could be attributed to an important influence of photo-protector accessory pigments. In summer, deviations from general trends, with values of a*ph(440) even higher (0.09±0.02 m2 mg [chl a]?1), were due to the dominance of small cell sizes and also to accessory pigments. These results highlight the difficulty in deriving robust relationships between chlorophyll concentration and phytoplankton absorption coefficients regardless of the season period. The validity of a size parameter (Sf) derived from the absorption spectra has been demonstrated and was shown to describe the size structure of phytoplankton populations, independently of pigment concentration, with mean values of 0.41 in spring and 0.72 in summer. Our results emphasize the need for specific parameterization for the study region and seasonal sampling approach in order to model the inherent optical properties from water reflectance signatures.  相似文献   

4.
In this study we examined the hypothesis that, under conditions of replete macronutrients and iron in the Southern Ocean, phytoplankton abundance and specific N uptake rates are influenced strongly by the processes of grazing and NH4 regeneration. NH4 and NO3 uptake rates by marine phytoplankton were measured to the northeast and northwest of the island of South Georgia during January-February 1998. Mean specific uptake rate for NO3 (vNO3) was 0.0026 h−1 (range 0.0013-0.0065 h−1) and for NH4 (vNH4) was 0.0097 h−1 (0.0014-0.0376 h−1). vNH4 was related positively with NH4 availability, which ranged from 0.1 to 1.5 mmol m−3 within the upper mixed layer. Ambient NH4 concentrations and vNH4 were both positively related to local krill biomass values, computed from mean values along acoustic transect segments within 2 km of the uptake measurement stations. These biomass values ranged from ∼1 g krill fresh mass m−2 in the northwest to >4 kg krill wet mass m−2 in the northeast. In contrast to the variability found with NH4 concentrations and uptake rates, vNO3 was more uniform across the sampling sites. Under these conditions, increasing NH4 concentration appeared to represent an additional N resource. However, high vNH4 tended to be found for stations with lower phytoplankton standing stocks, across a total range of 0.24-20 mg chlorophyll a m−3. These patterns suggest a coupling between phytoplankton biomass, vNH4 and krill in this region of variable but high krill biomass. Locally high concentrations of krill in parts of the study area appeared to have two opposing effects. On the one hand they could graze down phytoplankton stocks, but on the other hand, their NH4 excretion supported enhanced uptake rates by the remaining, ungrazed cells.  相似文献   

5.
The variability and origin of the Coloured Dissolved Organic Matter (CDOM) were studied in the Belgian coastal and adjacent areas including offshore waters and the Scheldt estuary, through the parameters: absorption at 375 nm, aCDOM(375), and the slope of the absorption curve, S. aCDOM(375) varied between 0.20 and 1.31 m−1 and between 0.97 and 4.30 m−1 in the marine area and Scheldt estuary, respectively. S fluctuated between 0.0101 and 0.0203 nm−1 in the marine area and between 0.0167 and 0.0191 nm−1 in the Scheldt estuary. The comparative analysis of aCDOM(375) and S variations evidenced different origins of CDOM in the BCZ. The Scheldt estuarine waters showed decreasing aCDOM(375) values with increasing salinity but constant S value of ∼0.018 nm−1 suggesting a dominant terrestrial origin of CDOM. On the contrary, samples collected in the marine domain showed a narrow range of aCDOM(375) but highly variable S suggesting the additional presence of autochthonous sources of CDOM. This source was evidenced based on the sorting of the marine offshore data according to the stage of the phytoplankton bloom when they were collected. A clear distinction was made between CDOM released during the growth stage characterized by high S (∼0.017 nm−1) and low aCDOM(375) and the decay phase characterized by low S (∼0.013 nm−1) and high aCDOM(375). This observation was supported by CDOM measurements performed on pure phytoplankton cultures which showed increased CDOM release along the wax and wane of the bloom but decreasing S. We concluded that the high variability of the CDOM signature in offshore waters is explained by the local biological production and processing of CDOM.  相似文献   

6.
We have estimated the spatial variability of phytoplankton specific absorption coefficients (a* ph ) in the water column of the California Current System during November 2002, taking into account the variability in pigment composition and phytoplankton community structure and size. Oligotrophic conditions (surface Chl < 0.2 mg m−3) dominated offshore, while mesotrophic conditions (surface Chl 0.2 to 2.0 mg m−3) where found inshore. The specific absorption coefficient at 440 [a* ph (440)] ranged from 0.025–0.281 m2mg−1 while at 675 nm [a* ph (675)] it varied between 0.014 and 0.087 m2mg−1. The implementation of a size index based on HPLC data showed the community structure was dominated by picoplankton. This would reduce the package effect in the variability of a* ph (675). Normalized a ph curves were classified in two groups according to their shape, separating all spectra with peaks between 440 and 550 nm as the second group. Most samples in the first group were from surface layers, while the second group were from the deep chlorophyll maximum or deeper. Accessory photoprotective pigments (APP) tended to decrease with depth and accessory photosynthetic pigments (APS) to increase, indicating the importance of photoprotective mechanisms in surface layers and adaptation to low light at depth. Samples with higher ratios of APP:APS (>0.4) were considered as phytoplankton adapted to high irradiances, and lower ratios (<0.26) as adapted to low irradiances. We found a good relationship between APP:APS and a* ph (440) for the deeper layer (DCM and below), but no clear evidence of the factors causing the variability of a* ph (440) in the upper layer.  相似文献   

7.
The variety in shape and magnitude of thein vivo chlorophyll-specific absorption spectra of phytoplankton was investigated in relation to differences in pigment composition off Sanriku, northwestern North Pacific. Site-to-site variations of the absorption coefficients,a ph * (λ), and pigment composition were clearly observed. At warm-streamer stations, higher values ofa ph * (440) anda ph * (650) were found with relatively high concentrations of chlorophyllb (a green algae marker). At stations located in the Oyashio water (cold streamer),a ph * (440) values were lower and fucoxanthin (a diatom marker) concentrations were higher, compared to the other stations. The peak in the absorption spectra at the Oyashio stations was shifted toward shorter wavelengths, which was probably due to the presence of phaeopigments. In a Kuroshio warm-core ring, the magnitude ofa ph * (440) was in between those at the warm-streamer and Oyashio stations, and the diagnostic pigment was peridinin (a dinoflagellate marker). These findings indicated that major differences in phytoplankton absorption spectra of each water mass were a result of differences in the phytoplankton pigment composition of each water mass, which was probably related to the phytoplankton community.  相似文献   

8.
Benthic faunal activity and density play an important role in determining the rates of benthic nutrient fluxes, which enrich the water column and contribute to phytoplankton growth. The intensity of nutrient fluxes in the Bay of Brest depends on the density of the invasive gastropod, Crepidula fornicata. In order to study the impact of benthic fluxes on phytoplankton dynamics, realistic daily nutrient inputs simulating various densities of C. fornicata were added to six enclosures during three weeks. The increase in fertilization intensity influenced the phytoplankton biomass. A succession from Chaetoceros spp. to Pseudo-nitzschia spp. and Leptocylindrus danicus was observed in all enclosures, but the dynamics of successions were different. Pseudo-nitzschia spp. was favored in the three more fertilized enclosures, while Chaetoceros spp. persisted longer in less enriched enclosures. Despite an apparent nitrogen limitation, the quantum efficiency of PSII (Fv/Fm) was high (>0.5) and stable in all enclosures. The maximal photosynthetic capacity (PBmax) was also invariable and oscillated around an average value of 2.23 mg C (mg Chl a)−1 h−1. The stability of Fv/Fm and PBmax observed at different nutrient input intensities demonstrates that the daily inputs maintained the physiological balance of the microalgae. The maximal light utilization efficiency (α) and the light saturation parameter (Ek) were also quite stable after day 8, which reveals that photosynthetic parameters were driven by growth constraints due to nutrient availability and not by incident light or species successions. We suggest that our results correspond to an “Ek independent variation” regulation. We propose that such regulation of photosynthetic parameters appears when there are frequent nutrient additions which do not allow replete nutrient conditions to be reached but lead to physiological equilibrium.  相似文献   

9.
In the Southampton Water estuary (southern England, U.K.), red-tides caused by the planktonic, phototrophic ciliateMesodinium rubrum(=Myrionecta rubra) occur during most summers and sometimes in autumn. These events were investigated in detail between 1985 and 1987 and were characterized by levels of chlorophylla(chl a) of over 100 μg l−1, cell numbers ofM. rubrumof over 1×103 ml−1, oxygen saturations of around 150%, and depleted numbers of macrozooplankton. Initiation of red-water did not appear to be triggered by irradiance or nutrients, but coincided with an increase in temperature and water column stability. This enhanced stability was promoted by increased surface to bottom gradients of both temperature and salinity, and by reduced mixing during neap tides. Development of red-water was accompanied by removal of most of the dissolved NH+4from the water column, whereas some NO3persisted, presumably maintained by freshwater input. NO3and NH+4gradually returned to pre-bloom concentrations as the red-water declined in late summer. Maximal biomass ofM. rubrumappeared to be limited by irradiance, and self-shading probably imposed an upper limit of around 300 mg chl a m−2within the water column. At the observed levels of chl a, irradiance values within the population maximum between 1 and 3 m depth were only just of the order (≈15 μmol photons m−2 s−1) required to balance estimated respiratory demands. Oxygen concentration became undersaturated during the late bloom phase, with minimal values of 20–30% saturation recorded in deeper waters; however, despite this and reduced numbers of macrozooplankton, direct deleterious effects on other organisms were not observed.  相似文献   

10.
We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial–temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L−1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L−1. The highest concentrations of chlorophyll a (15.299 μg L−1) and fucoxanthin (9.417 μg L−1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger species in Jiaozhou Bay, as revealed by our biomarker pigment analysis.  相似文献   

11.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

12.
Underwater light environment and photosynthetic accessory pigments were investigated in Ariake Bay in order to understand how change of the pigments occurs in response to the tidal-induced changes in underwater light conditions. We hypothesize that phytoplankton increases photo-protective pigments and decreases light-harvesting pigments under higher light condition in the mixed layer caused by tidal cycle. Contribution rates of non-phytoplankton particles (a nph (400–700)) for light attenuation coefficient (K d ) was highest (32–85%), and those of phytoplankton particles (a ph (400–700)), dissolved organic matter (a g (400–700)) and water were 6–32, 6–21 and 5–23%, respectively. Mean K d was higher during the spring tide (0.55 ± 0.23 m−1) than the neap tide (0.44 ± 0.16 m−1), and the K d difference was caused by the substances resuspension due to the tidal current. In contrast, ratios of photo-protective pigments (diadinoxanthin and diatoxanthin) per chlorophyll a ((DD+DT)/Chl a) were higher during the neap tide (0.10 ± 0.03 mg mg-Chl a −1) than the spring tide (0.08 ± 0.03 mg mg-Chl a −1). And there was significant positive correlation between (DD+DT)/Chl a and mean relative PAR in the mixed layer ($ \overline {I_{mix} } $ \overline {I_{mix} } ). Moreover, there was significant negative correlation between ratios of light-harvesting pigments (fucoxanthin) per Chl a (Fuco/Chl a) and $ \overline {I_{mix} } $ \overline {I_{mix} } . These results suggested that phytoplankton in Ariake Bay increase photo-protective pigments and decrease light-harvesting pigments in the higher light condition of less turbid, shallower mixed layer during neap tide than spring tide.  相似文献   

13.
We analysed mixed-layer seasonal and interannual variability in phytoplankton biomass and macronutrient (NO3 and Si(OH)4) concentrations from three decades of observations, and nitrogen uptake rates from the 1990s along Line P in the NE subarctic Pacific. Chlorophyll a concentrations near 0.35 mg m−3 were observed year-round along Line P except at the nearshore station (P4) where chlorophyll a concentrations in spring were on average 2.4 times the winter values. In contrast, the temporal variability in carbon-to-chlorophyll ratios at the two main end members of Line P (P4 and OSP) was high. Large seasonal and interannual variability in NO3 and Si(OH)4 concentration were observed along Line P. Highest upper mixed-layer (top 15 m) nutrient concentrations occurred on the continental shelf in late summer and early fall due to seasonal coastal upwelling. Beyond the shelf, maximum nutrient concentrations increased gradually offshore, and were highest in late winter and early spring due to mixing by winter storms. Interannual variations in upper mixed-layer nutrient concentrations beyond the shelf (>128°W) were correlated with E-W winds and the PDO since 1988 but were not correlated with either climate index between 1973 and 1981. Despite differences in nutrient concentration, nutrient utilization (ΔNO3 and ΔSi(OH)4) during the growing season were about 7.5 μM at all offshore stations. Variations in ΔNO3 were correlated with those of ΔSi(OH)4. The annual cycle of absolute NO3 uptake (ρNO3) and NH4 uptake (ρNH4) rates by phytoplankton in the upper mixed-layer showed a weak increasing trend from winter to spring/summer for the period 1992-1997. Rates were more variable at the nearshore station (P4). Rates of ρNO3 were low along the entire line despite abundant NO3 and low iron (Fe), at the offshore portion of Line P and sufficient Fe at the nearshore station (P4). As a result, new production contributed on average to only 32 ± 15% of the total nitrogen (N) uptake along Line P. NO3 utilization in the NE subarctic Pacific is probably controlled by a combination of environmental variables, including Fe, light and ambient NH4 levels. Elevated ambient NH4 concentrations seem to decrease the rates of new production (and f-ratios) in surface waters of the oceanic subarctic NE Pacific. Contrary to expectation, phytoplankton biomass, nutrient utilization (ΔNO3 and ΔSi(OH)4), and nitrogen uptake (ρNO3 + ρNH4) varied relatively little along Line P, despite significant differences in the factors controlling phytoplankton composition assemblages and production. Future studies would benefit from including other variables, especially light limitation, to improve our understanding of the seasonal and interannual variability in phytoplankton biomass and nutrients in this region.  相似文献   

14.
Two microcosm experiments were carried out to simulate the effect of sporadic oil spills derived from tanker accidents on oceanic and coastal marine phytoplankton assemblages. Treatments were designed to reproduce the spill from the Prestige, which took place in Galician coastal waters (NW Iberia) in November 2002. Two different concentrations of the water soluble fraction of oil were used: low (8.6 ± 0.7 μg l−1 of chrysene equivalents) and high (23 ± 5 μg l−1 of chrysene equivalents l−1). Photosynthetic activity and chlorophyll a concentration decreased in both assemblages after 24–72 h of exposure to the two oil concentrations, even though the effect was more severe on the oceanic assemblage. These variables progressively recovered up to values close or higher than those in the controls, but the short-term negative effect of oil, which was generally stronger at the high concentration, also induced changes in the structure of the plankton community. While the biomass of nanoflagellates increased in both assemblages, oceanic picophytoplankton was drastically reduced by the addition of oil. Effects on diatoms were also observed, particularly in the coastal assemblage. The response of coastal diatoms to oil addition showed a clear dependence on size. Small diatoms (<20 μm) were apparently stimulated by oil, whereas diatoms >20 μm were only negatively affected by the high oil concentration. These differences, which could be partially due to indirect trophic interactions, might also be related to different sensitivity of species to PAHs. These results, in agreement with previous observations, additionally show that the negative effect of the water soluble fraction of oil on oceanic phytoplankton was stronger than on coastal phytoplankton.  相似文献   

15.
This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical water properties in the cage culture area of Sepanggar Bay, Sabah, Malaysia based on field measurement conducted during July 2005 to January 2006 to study the spatial and temporal variation in phytoplankton communities and physico-chemical water properties of the bay. Phytoplankton samples and water parameters data were collected from five different stations located inside the bay during Southwest, Interseasonal and Northeast monsoons. Forty phytoplankton genera, representatives of 23 families, were found in the study area with a mean abundance of 1.55 ± 1.19 × 106 cells L−1. Most of these genera belong to diatoms (82.17%), Dinoflagellates (17.55%) and cyanobacteria (0.29%). Three genera were found to be dominant (>10%) in phytoplankton abundance and these were Coscinodiscus spp. (36.38%), Chaetoceros spp (17.65%) and Bacteriastrum spp. (10.98%). The most dominant genus was Coscinodiscus spp. which showed high abundance during all monsoons and stations (except Station 3). Among the seven environmental parameters tested in this study, water temperature, pH and suspended sediment concentration were found to be significantly different between monsoons. On the other hand, no significant differences were found between stations for the studied physico-chemical parameters. A clear differences in phytoplankton densities were observed between monsoons and stations with higher mean abundances during interseasonal monsoon (2.40 ± 1.37 × 106 cells L−1) and at station five (2.05 ± 0.74 × 106 cells L−1), respectively. Conversely, the diversity indices, both Shannon–Wiener (H)(H) and Pielou (J)(J), showed no significant difference throughout stations and monsoons (except (H)(H) for monsoons). Analysis of similarity (ANOSIM) results demonstrated temporal differences in phytoplankton community structure with highly diverse phytoplankton assemblage. Through cluster analysis five groups of phytoplankton were attained (at 40% similarity level) though no marked separation of the taxonomic classes pointed towards the constant pattern of the phytoplankton assemblage in the studied area.  相似文献   

16.
通过2012年夏季第五次北极科学考察期间在楚科奇海及其邻近海域现场调查所获得的数据分析研究了海域的粒度分级叶绿素a浓度和初级生产力。结果表明,叶绿素a浓度和初级生产力的高值均出现在楚科奇海陆架区,并且远高于深海区。去程时调查海域水层平均叶绿素a浓度的变化范围为0.32~15.66mg/m3,平均(2.77±3.96)mg/m3,高值区出现在南部邻近白令海峡海域、北部阿拉斯加巴罗近岸和冰缘区;初级生产力的范围为50.11~943.28mg/(m2d),高值出现在冰缘水华区。返程时水层平均叶绿素a浓度的变化范围为0.07~1.52mg/m3,平均(0.41±0.40)mg/m3,高值仍出现在陆架区,但比去程时低了一个数量级;初级生产力的分布范围为12.31~41.35mg/(m2d),高值出现在陆架区。浮游植物粒度分级测定结果表明,在生物量较低的深海区,叶绿素a浓度和初级生产力的粒级结构以微微型浮游生物(Pico级份)占优势(其贡献率分别为46.1%和56.9%),小型(Net级份)和微型(Nano级份)对总叶绿素a浓度的贡献差异极小,分别为26.6%和27.3%,对总初级生产力的贡献分别为23.8%和19.3%;而在生物量较高的水深小于200m的陆架区,Net级份叶绿素a浓度所占百分比最高,Pico级份次之,Nano级份最低,分别为59.8%、27.9%和12.3%,初级生产力的粒级结构中叶绿素a浓度所占百分比由高到低同样是Net、Pico和Nano,所占百分比分别为60.6%,32.2%和7.2%。  相似文献   

17.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   

18.
Sand transport in Lido and Chioggia inlets was measured using modified Helley–Smith sand traps equipped with 60-micron nets. The traps had an efficiency of about 4% only but provided enough material for analysis. Very fine sand (0.07 < d < 0.11 mm) only was collected in the traps. Transport of sand was greatest in the bottom 10% of the water column and followed a Rouse profile. Sand extended to a height of about 4 m above the bed during peak flows corresponding to the estimated thickness of the boundary layer; and observed in synoptic ADCP profiles. The sand in the benthic boundary layer was largely inorganic (>95%); above this layer, organic content varied widely and was greatest near the surface. The movability number Ws/UWs/U showed a linear relationship to dimensionless grain diameter (D*): (Ws/U)=(D/10)(Ws/U)=(D/10); D* < 10. Sand concentration in suspension was simulated by a mean Rouse parameter of −2.01 ± 0.66 (Lido inlet) and −0.82 ± 0.27 (Chioggia inlet). The β parameter ( Hill et al., 1988) was correlated with D* and movability number in the form: β=2.07−2.03D+59(Ws/U)2β=2.072.03D+59(Ws/U)2 (r2 = 0.42). Von Karman's constant was back-calculated from a Law of the Wall relationship as a test on the accuracy of U* estimates; a mean value of 0.37 ± 0.1 (compared to the accepted value of 0.41) suggest U* was accurate to within 10%. The constant of proportionality (γ = 3.54 × 10−4) between reference concentration (Ca) and normalized excess bed shear stress was in line with the published literature.  相似文献   

19.
The Wadden Sea, a shallow coastal area bordering the North Sea, is optically a complex area due to its shallowness, high turbidity and fast changes in concentrations of optically active substances. This study gathers information from the area on concentrations of suspended particulate matter (SPM), Chlorophyll-a (Chl-a), and Coloured Dissolved Organic Matter (CDOM), on total absorption and beam attenuation, and on reflectances from the whole area. It examines the processes responsible for variations in these. Sampling took place at 156 stations in 2006 and 2007. At 37 locations also the specific inherent optical properties (SIOPs) were determined. Results showed large concentration ranges of 2–450 (g m-3) for SPM, 2–67 (mg m-3) for Chl-a, and 0–2.5 m−1 for CDOM(440) absorption. Tides had a large influence on the SPM concentration, while Chl-a had a mainly seasonal pattern. Resuspension lead to a correlation between SPM and Chl-a. The absorption of CDOM had a spatial variability with extremely high values in the Dollard, although the slope of CDOM absorption spectra was comparable with that of the North Sea. The Chl-a specific pigment absorption proved to be influenced by phytoplankton species and specific absorption of non-algal particles at 440 nm was correlated with the mud content of the soil at the sample locations. SPM specific absorption was not found to correlate with any measured factor. As the concentrations of optically active substances changed, we also found spatial and temporal variability in the absorption, beam attenuation and reflectances. Reflectance spectra categorized in groups with decreasing station water depths and with extreme CDOM and SPM concentrations showed distinguishable shapes.  相似文献   

20.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号