首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Supraglacial channels are an important mechanism for surface water transport over the ablation zone of western Greenland. The first assessment of the spatio‐temporal distribution of surface melt channels and their relationship to supraglacial lakes over the Jakobshavn Isbræ region of Western Greenland was analysed using Landsat Enhanced Thematic Mapper Plus panchromatic images during the 2007 melt season. A total of 1188 melt channels were delineated and show an increase in the number of melt channels throughout the season, reaching a peak on 9 August. Water‐filled melt channels advanced to a maximum elevation of 1647 m on 9 August and attained a minimum average slope of 0.009 on 8 July. The ablation zone demonstrates two hydrologic modes, where crevasse and moulin terminating channels dominate at elevations <800 m and higher‐order channel networks >800 m. Development of higher‐order networks is interrupted by flow divergence due to partitioning of melt water into vertical infiltration through moulins and crevasse fields prevalent at lower elevations. Tributary and connector networks between 800 and 1200 m in elevation are correlated with fewer lake occurrences, lower surface velocities (~50 m a?1), and ice flow dominated by internal deformation over basal sliding. High‐order channels are associated with lake basins that exceed melt water storage capacity. Evolution of channel networks is coupled to changes in melt water production, runoff, and ice dynamics with implication for the englacial and subglacial environments. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons, Ltd.  相似文献   

3.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Stepped bedrock topography at the snout of a small outlet glacier from Øksfjordjøkelen, North Norway, produces an extensive subglacial cavity system which stretches some 70m across and 100m up-glacier, giving access beneath ice ≤50 m thick. Inside the cavity, regelation ice, clean glacier ice and deforming basal ice have been observed. Samples were taken and basal debris concentrations at the glacier sole were found to vary between 0.005 and 15.38 per cent by volume. The basal ice velocity has been determined using a linear variable differential transformer attached to an analogue recorder, and also by means of measured displacements of ice crews and clasts embedded in the basal ice. Velocities were found to differ both spatially and temporally from a maximum of 2.55 mm h1 to a minimum of 0.3 mm h?1. The measurements and observations, which have been related to present theory, show how spatially averaged values for a number of variables could lead to inaccuracies in predicted erosion values, certainly at a local scale. On the exposed foreland, jointcontrolled lee-side faces provide evidence for extensive subglacial plucking (here taken to mean the removal of preloosened bed material and/or material resulting from bed failure). Indeed, in the cavity the early stages of removal of joint-controlled blocks by ice deformation along joints have been observed. The importance of debris-rich basal ice is shown in the formation of large striations (up to 500cm × 16cm × 2cm) present on the foreland.  相似文献   

5.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

6.
Kuannersuit Glacier, a valley glacier on Disko Island in west Greenland, experienced a major surge from 1995 to 1998 where the glacier advanced 10·5 km and produced a ~65 m thick stacked sequence of debris‐rich basal ice and meteoric glacier ice. The aim of this study is to describe the tectonic evolution of large englacial thrusts and the processes of basal ice formation using a multiproxy approach including structural glaciology, stable isotope composition (δ18O and δD), sedimentology and ground‐penetrating radar. We argue that the major debris layers that can be traced in the terminal zone represent englacial thrusts that were formed early during the surge. Thrust overthrow was at least 200–300 m and this lead to a 30 m thick repetition of basal ice at the ice margin. It is assumed that the englacial thrusting was initiated at the transition between warm ice from the interior and the cold snout. The basal debris‐rich ice was mainly formed after the thrusting phase. Two sub‐facies of stratified basal ice have been identified; a lower massive ice facies (SM) composed of frozen diamict enriched with heavy stable isotopes overlain by laminated ice facies (SL) consisting of millimetre thick lamina of alternating debris‐poor and debris‐rich ice. We interpret the stratified basal ice as a continuum formed mainly by freeze‐on processes and localized regelation. First laminated basal ice is formed and as meltwater is depleted more sediment is entrained and finally the glacier freezes to the base and massive diamict is frozen‐on. The increased ability to entrain sediments may partly be associated with higher basal freezing rates enhanced by loss of frictional heat from cessation of fast flow and conductive cooling through a thin heavily crevassed ice during the final phase of the glacier surge. The dispersed basal ice facies (D) was mainly formed by secondary processes where fine‐grained sediment is mobilized in the vein system of ice. Our results have important implications for understanding the significance of basal ice formation and englacial thrusting beneath fast‐flowing glaciers and it provides new information about the development of landforms during a glacier surge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
Measurements of surface velocity, ice deformation (at 42 and 89% ice depth) and proglacial stream discharge were made at Haut Glacier d'Arolla, Switzerland, to determine diurnal patterns of variation in each. Data are analysed in order to understand better the relationship between hydraulically induced basal motion and glacier ice deformation over short timescales. The data suggest that hydraulically induced localized basal ‘slippery’ spots are created over diurnal cycles, causing enhanced basal motion and spatially variable glacier speed‐up. Our data indicate that daily glacier speed‐up is associated with reduced internal deformation over areas previously identified as slippery spots and increased deformation in areas located adjacent to or down‐glacier from slippery spots. We interpret this pattern in terms of a transfer of mechanical support for basal shear stress away from slippery spots to adjacent sticky areas, where the resulting stronger ice–bed coupling causes increased ice deformation near the bed. These patterns indicate that basal ice is subjected to stress regimes that are variable at a high spatial and temporal resolution. Such variations may be central to the creation of anomalous vertical velocity profiles measured above and down‐glacier of basal slippery zones, which have shown evidence for ‘plug flow’ and extrusion flow over annual timescales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Rock debris on the surface of ablating glaciers is not static, and is often transported across the ice surface as relief evolves during melt. This supraglacial debris transport has a strong influence on the spatial distribution of melt, and is implicated in the formation of hummocky glacial topography in deglaciated terrain. Furthermore, as ice‐dammed lakes and ice‐cored slopes become increasingly common in deglaciating watersheds, there is rising concern about hazards to humans and infrastructure posed by mass‐wasting of ice‐cored debris. The existing quantitative framework for describing these debris transport processes is limited, making it difficult to account for transport in mass balance, hazard assessment, and landscape development models. This paper develops a theoretical framework for assessing slope stability and gravitational mass transport in a debris‐covered ice setting. Excess water pressure at the interface between ablating ice and lowering debris is computed by combining Darcy's law with a meltwater balance. A limit‐equilibrium slope stability analysis is then applied to hypothetical debris layers with end‐member moisture conditions derived from a downslope meltwater balance that includes production and seepage. The resulting model system constrains maximum stable slope angles and lengths that vary with debris texture, thickness, and the rate of meltwater production. Model predictions are compared with field observations and with digital elevation model (DEM)‐derived terrain metrics from two modern debris‐covered glaciers on Mount Rainier, USA. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of ice cover on flow characteristics in meandering rivers are still not completely understood. Here, we quantify the effects of ice cover on flow velocity, the vertical and spatial flow distribution, and helical flow structure. Comparison with open‐channel low flow conditions is performed. An acoustic doppler current profiler (ADCP) is used to measure flow from up to three meander bends, depending on the year, in a small sandy meandering subarctic river (Pulmanki River) during two consecutive ice‐covered winters (2014 and 2015). Under ice, flow velocities and discharges were predominantly slower than during the preceding autumn open‐channel conditions. Velocity distribution was almost opposite to theoretical expectations. Under ice, velocities reduced when entering deeper water downstream of the apex in each meander bend. When entering the next bend, velocities increased again together with the shallower depths. The surface velocities were predominantly greater than bottom/riverbed velocities during open‐channel flow. The situation was the opposite in ice‐covered conditions, and the maximum velocities occurred in the middle layers of the water columns. High‐velocity core (HVC) locations varied under ice between consecutive cross‐sections. Whereas in ice‐free conditions the HVC was located next to the inner bank at the upstream cross‐sections, the HVC moved towards the outer bank around the apex and again followed the thalweg in the downstream cross‐sections. Two stacked counter‐rotating helical flow cells occurred under ice around the apex of symmetric and asymmetric bends: next to the outer bank, top‐ and bottom‐layer flows were towards the opposite direction to the middle layer flow. In the following winter, no clear counter‐rotating helical flow cells occurred due to the shallower depths and frictional disturbance by the ice cover. Most probably the flow depth was a limiting factor for the ice‐covered helical flow circulation, similarly, the shallow depths hinder secondary flow in open‐channel conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Of the various information recovered from radio‐echo sounding (RES) of polar ice sheets, internal layering is currently under‐utilized by glaciologists, due in part to a lack of available data. Here, RES layering of the West Antarctic Ice Sheet, from the 1970s RES survey of approximately 70 per cent of this ice mass, is made available in a series of spreadsheets. Three types of internal layers are evident in the dataset. The first is continuous layers that have a stratigraphic appearance and can often be traced easily for hundreds of kilometres. The second is buckled layering, which also resembles stratigraphy and can sometimes be traced over tens of kilometres (although layer identification can often be difficult). The roughness of these layers is often greater than the bed at the same wavelength. The third is highly distorted or absent layering, which is not possible to trace laterally. Despite debate concerning the origin of RES layers, they are thought by most glaciologists to represent isochronous surfaces. The pattern of internal layering is potentially of importance to glaciologists for three reasons. (1) The position of undeformed layers below the ice surface is a function of accumulation rate, ice flow and basal melting conditions. Numerical modelling (including new ‘data assimilation’ techniques) could be used to discriminate between these processes, so revealing important information about the ice sheet and its environment. (2) Buckled layers are deformed by ice flow process, and so their occurrence can be related to the flow dynamics of the ice sheet. (3) Very buckled layers are often associated with ice stream flow, which allows their location to mark the positions of past and present fast‐flowing ice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A global positioning system and ground penetrating radar surveys is used to produce digital elevation models of the surface and bed of Brewster Glacier. These are used to derive maps of subglacial hydraulic potential and drainage system structure using three different assumptions about the subglacial water pressure (Pw): (i) Pw = ice overburden; (ii) Pw = half ice overburden; (iii) Pw = atmospheric. Additionally, 16 dye‐tracing experiments at 12 locations were performed through a summer melt season. Dye return curve shape, together with calculations of transit velocity, dispersivity and storage, are used to infer the likely morphology of the subglacial drainage system. Taken together, the data indicate that the glacier is underlain by a channelised but hydraulically inefficient drainage system in the early summer in which water pressures are close to ice overburden. By mid‐summer, water pressures are closer to half‐ice overburden and the channelised drainage system is more hydraulically efficient. Surface streams that enter the glacier close to the location of major subglacial drainage pathways are routed quickly to the channels and then to the glacier snout. Streams that enter the glacier further away from the drainage pathways are routed slowly to the channels and then to the snout because they first flow through a distributed drainage system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Ice streams are integral components of an ice sheet's mass balance and directly impact on sea level. Their flow is governed by processes at the ice‐bed interface which create landforms that, in turn, modulate ice stream dynamics through their influence on bed topography and basal shear stresses. Thus, ice stream geomorphology is critical to understanding and modelling ice streams and ice sheet dynamics. This paper reviews developments in our understanding of ice stream geomorphology from a historical perspective, with a focus on the extent to which studies of modern and palaeo‐ice streams have converged to take us from a position of near‐complete ignorance to a detailed understanding of their bed morphology. During the 1970s and 1980s, our knowledge was limited and largely gleaned from geophysical investigations of modern ice stream beds in Antarctica. Very few palaeo‐ice streams had been identified with any confidence. During the 1990s, however, glacial geomorphologists began to recognise their distinctive geomorphology, which included distinct patterns of highly elongated mega‐scale glacial lineations, ice stream shear margin moraines, and major sedimentary depocentres. However, studying relict features could say little about the time‐scales over which this geomorphology evolved and under what glaciological conditions. This began to be addressed in the early 2000s, through continued efforts to scrutinise modern ice stream beds at higher resolution, but our current understanding of how landforms relate to processes remains subject to large uncertainties, particularly in relation to the mechanisms and time‐scales of sediment erosion, transport and deposition, and how these lead to the growth and decay of subglacial bedforms. This represents the next key challenge and will require even closer cooperation between glaciology, glacial geomorphology, sedimentology, and numerical modelling, together with more sophisticated methods to quantify and analyse the anticipated growth of geomorphological data from beneath active ice streams. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

16.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Vertical sediment exchange is a fundamental component of bedload transport in gravel‐bed channels. This paper describes the characteristic depth of exchange achieved over a long flood series. Analysis is based on 11 recoveries of magnetically tagged gravels deployed in Carnation Creek, Canada, completed between 1990 and 2008. Vertical grain exchange mixes gravels throughout the streambed relatively rapidly. Within one to eight floods the mean burial depth approaches two times the surface layer thickness, quantified by the 90th percentile of the size distribution. Finer gravels are mixed more rapidly into the bed than coarser gravels. Both active and passive grain exchanges throughout most of the bed produce the overall vertical distribution of marked grains. Gravel exchanges exhibit fairly consistent patterns once tracers are well mixed by large floods. Results highlight the role of flood sequence in determining exchange depths, support the notion of an upper limit to exchange, and underscore the importance of passive grain exchange. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The distribution of streamwater within ice‐covered lakes influences sub‐ice currents, biological activity and shoreline morphology. Perennially ice‐covered lakes in the McMurdo Dry Valleys, Antarctica, provide an excellent natural laboratory to study hydrologic–limnologic interactions under ice cover. For a 2 h period on 17 December 2012, we injected a lithium chloride tracer into Andersen Creek, a pro‐glacial stream flowing into Lake Hoare. Over 4 h, we collected 182 water samples from five stream sites and 15 ice boreholes. Geochemical data showed that interflow travelled West of the stream mouth along the shoreline and did not flow towards the lake interior. The chemistry of water from Andersen Creek was similar to the chemistry of water below shoreline ice. Additional evidence for Westward flow included the morphology of channels on the ice surface, the orientation of ripple marks in lake sediments at the stream mouth and equivalent temperatures between Andersen Creek and water below shoreline ice. Streamwater deflected to the right of the mouth of the stream, in the opposite direction predicted by the Coriolis force. Deflection of interflow was probably caused by the diurnal addition of glacial runoff and stream discharge to the Eastern edge of the lake, which created a strong pressure gradient sloping to the West. This flow directed stream momentum away from the lake interior, minimizing the impact of stream momentum on sub‐ice currents. It also transported dissolved nutrients and suspended sediments to the shoreline region instead of the lake interior, potentially affecting biological productivity and bedform development. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Subglacial conditions strongly influence the flow of ice‐sheets, in part due to the availability of melt water. Contemporary ice sheets are retreating and are affected by increased melting as climate warms. The south Swedish uplands (SSU) were deglaciated during the relatively warm Bølling‐Allerød interval, and by studying the glacial landforms there it is possible to increase the understanding of the subglacial environment during this period of warming. Across the study area, vast tracts of hummocks have long been recognized. However, recent mapping shows a pattern of elongated zones of hummocks radially oriented, hereafter referred to as ‘hummock corridors’. Morphometric parameters were measured on the hummock corridors using a 2 m horizontal resolution digital elevation model. Corridor width varies between 0.2 and 4.9 km and their length between 1.5 and 11.8 km. A majority of hummock corridors are incised in drumlinised till surfaces. The pattern of hummock corridors shows a clear relation to the overall ice‐flow. Further, hummock corridors do not follow topographic gradients, and in at least one place an esker overlies hummocks on the corridor floor. The lateral spacing of hummock corridors and corridor morphology are similar to tunnel valleys, eskers and glaciofluvial corridors reported elsewhere. Such relationships support a subglacial genesis of the corridors in the SSU by water driven by the subglacial hydraulic gradient and that hummock corridors are forms that can be identified as tunnel valleys and glaciofluvial corridors (GFC). Ages were assigned to hummock‐corridor cross‐sections from a deglacial reconstruction of the Fennoscandian Ice Sheet. By comparing the frequency of corridors per age interval with climate variations from a Greenland ice core, we hypothesize that an increase in the number of corridors is related to the Bølling‐Allerød warming, indicating a higher rate of delivery of surface melt water to the bed at this time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号