首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Three groups of alluvial terraces together with the modern floodplain mark the Postglacial development of the middle part of the Dane Valley, Cheshire. These are a High terrace group of late Pleistocene age, a Middle terrace group of late Pleistocene to early Holocene age, a Low terrace of mid–late Holocene age, and a modern (post ca. 1840 AD) floodplain. A chronology of erosion, deposition, and landform development since mid-Holocene times is established in this paper on the basis of terrace morphology, stratigraphy, sedimentology, soil analysis, magnetic mineral analysis, and four radiocarbon dates. After dissection of the Middle terrace during the early to mid-Holocene, a long period of lateral activity by the river was followed by a major aggradation phase, which formed the Low terrace surface. This was followed by dissection during the last ca. 300 years and the development of the modern floodplain since ca. 1840 AD. Various explanations for the changes during the Holocene are considered; the Low terrace aggradation appears to be related to a major phase of mediaeval soil erosion.  相似文献   

2.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
European settlement in southeastern Australia led to rapid changes in the morphology of many upland streams. However, our knowledge of the nature of these changes is limited as historical records and preserved palaeochannels are rare. In this study we compare a well‐preserved section of the late Holocene palaeochannel of Gilmore Creek to its present channel. We used a combination of map and aerial photograph interpretation, field survey, OSL dating and discharge analysis to describe and compare the modern and palaeochannels and establish a firm date for the timing of channel change. In common with many other streams in southeastern Australia Gilmore Creek's late Holocene channel meandered across a stable well‐vegetated and frequently inundated floodplain. After about 1830 European settlers quickly modified the catchment by clearing riparian and hillslope vegetation, introducing grazing animals and other exotic species and mining for alluvial gold in the headwaters. The OSL dates show that between about 1850 and 1880 the small meandering channel aggraded with coarse sands and then up to about 1 m of silty sand was deposited over the floodplain. Declining sediment input from upstream channel avulsion before 1890 resulted in the establishment of a straighter, larger capacity channel that incised to the level of basal cobbles and, in places, to bedrock. The dramatic change in channel pattern resembles that described on the Cann River in eastern Victoria following the removal of riparian vegetation and within‐channel coarse woody debris. At Gilmore Creek increased channel capacity has greatly reduced the average frequency of floodplain inundation. High values of specific stream power suggest that channel morphology is now well adjusted to the present flow regime. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
An extensive literature about fluvial sediment waves, slugs or pulses has emerged in the past 20 years. The concept has been useful in many respects, but has been applied to diverse phenomena using a variety of definitions. Moreover, inferred linkages between channel‐bed changes and sediment loads are often not justifiable. This paper reviews concepts of large fluvial sediment waves at scales extending to several tens of kilometres. It points out constraints on the inferences that can be made about sediment loads based on changes in channel‐bed elevation at this scale where channel sediment interacts with storage in floodplain and terrace deposits. The type area of G. K. Gilbert's initial sediment‐wave concept is re‐examined to show that neither wave translation nor dispersion occurred in the simple manner commonly assumed. Channel aggradation and return to graded conditions provide an alternative theory explaining Gilbert's observed bed‐elevation changes. Recognizing the evidence and implications of the former passage of a large‐scale bed wave is essential to the accurate diagnosis of catchment conditions and the adoption of appropriate river restoration goals or methods. Sediment loads, water quality, channel morphologic stability and aquatic ecosystems often reflect changes in sediment storage long after the channel bed has returned to grade. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
River basins in south‐western USA are some of the most extensively studied arid land fluvial systems in the world. Since the early 1960s their hydro‐climatic histories have been reconstructed from the analysis of alluvial cut‐and‐fill cycles, while from the late 1970s there have been investigations of slackwater deposits and palaeostage indicators for large floods in stable‐boundary bedrock reaches. However, no studies have regionally integrated Holocene fluvial histories from these two different types of fluvial environments. The current study combines the alluvial archive with flood records from bedrock reaches to generate a probability‐based 12,000 year record of flooding in south‐western USA. Using more than 700 14C‐dated fluvial units, the analysis produces a high resolution (centennial) flood record. Seven episodes of increased flooding occurred at 11,250–10,400, 8800–8350, 8230–7600, 6700–5700, 5600–4820, 4550–3320 and 2000–0 cal. BP. Bedrock reaches are found to record more frequent floods during the middle to late Holocene, while in alluvial rivers more flood units are dated to the early and middle Holocene. These differences are primarily the result of selective preservation with alluvial reaches tending to erode during periods characterised by very large floods. Episodes of major Holocene flooding recorded in slackwater deposits within bedrock systems correspond with periods of increased precipitation in the region and lower temperatures. In contrast, within alluvial rivers above‐average flooding probabilities, as well as regionally extensive channel entrenchment episodes, match with reduced annual precipitation and lower temperatures. The results of this study clearly demonstrate the value of the Holocene fluvial archive for reconstructing regional, short‐term hydro‐climatic change in south‐western USA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The San Antonio River Delta (SARD), Texas, has experienced two major avulsions in the past 80 years, and a number of other historical and Holocene channel shifts. The causes and consequences of these avulsions – one of which is ongoing – were examined using a combination of fieldwork, geographic information system (GIS) analysis, and historical information to identify active, semi‐active, and paleochannels and the sequence of shifting flow paths through the delta. The role of deposition patterns and antecedent morphology, large woody debris jams, and tectonic influences were given special attention. Sedimentation in the SARD is exacerbated by tectonic effects. Channel aggradation is ubiquitous, and superelevation of the channel bed above the level of backswamp areas on the floodplain is common. This creates ideal setup conditions for avulsions, and stable, cohesive fine‐grained banks favor avulsions rather than lateral migration. Flood basins between the alluvial ridges associated with the aggraded channels exist, but avulsions occur by re‐occupation of former channels found within or connected to the flood basins. Large woody debris and channel‐blocking log‐jams are common, and sometimes displace flow from the channel, triggering crevasses. However, a large, recurring log‐jam at the site of the ongoing avulsion from the San Antonio River into Elm Bayou is not responsible for the channel shift. Rather, narrow, laterally stable channels resulting from flow splits lead to accumulation of wood. Some aspects of the SARD avulsion regime are typical of other deltas, while others are more novel. These includes avulsions involving tributaries and subchannels within the delta as well as from the dominant channel; tectonic influences on delta backstepping and on channel changes within the delta; avulsions as an indirect trigger for log‐jam formation (as well as vice‐versa); and maintenance of a multi‐channel flow pattern distinct from classic anastamosing or distributary systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper examines the timing, nature and magnitude of river response in upland, piedmont and lowland reaches of the Tyne basin, northern England, to high-frequency (20–30 year) changes in climate and flood regime since 1700 AD. Over this period fluvial activity has been characterized by alternating phases of river-bed incision and stability coinciding with non-random, decadal-scale fluctuations in flood frequency and hydroclimate that appear to be linked to changes in large-scale upper atmospheric circulation patterns. Episodes of widespread channel bed incision (1760–1799, 1875–1894, 1955–1969) result from a higher frequency of large floods (> 20 year return period) and cool, wet climate under meridional circulation regimes. Phases of more moderate floods (5–20 year return period), corresponding to zonal circulation types (1820–1874, 1920–1954), are characterized by enhanced lateral reworking and sediment transfer in upper reaches of the catchment, and channel narrowing and infilling downstream. Rates of fluvial activity are reduced in intermediate periods (1800–1819, 1895–1919) with no dominant circulation regime associated with lower flood frequency and magnitude. The results of this study provide a valuable guide for forecasting probable drainage basin and channel response to future climate change.  相似文献   

8.
A cellular model of Holocene upland river basin and alluvial fan evolution   总被引:1,自引:0,他引:1  
The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to simulate the Holocene development of a small upland catchment (4·2 km2) and the alluvial fan at its base. The model operates at a 3 m grid scale and simulates every flood over the last 9200 years, using a rainfall record reconstructed from peat bog wetness indices and land cover history derived from palynological sources. Model results show that the simulated catchment sediment discharge above the alluvial fan closely follows the climate signal, but with an increase in the amplitude of response after deforestation. The important effects of sediment storage and remobilization are shown, and findings suggest that soil creep rates may be an important control on long term (>1000 years) temperate catchment sediment yield. The simulated alluvial fan shows a complex and episodic behaviour, with frequent avulsions across the fan surface. However, there appears to be no clear link between fan response and climate or land use changes suggesting that Holocene alluvial fan dynamics may be the result of phases of sediment storage and remobilization, or instabilities and thresholds within the fan itself. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Terraces and floodplains are important indicators of near‐channel sediment dynamics, serving as potential sediment sources and sinks. Increasing availability of high resolution topography data over large areas calls for development of semi‐automated techniques for identification and measurement of these features. In this study we introduce a novel tool that accommodates user‐defined parameters including, a local‐relief threshold selected by a variable‐size moving window, minimum area threshold, and maximum distance from the channel to identify and map discrete terrace and floodplain surfaces. Each of the parameters can easily be calibrated for a given watershed or reach. Subsequently, the tool automatically measures planform area, absolute elevation, and height relative to the local river channel for each terrace polygon. We validate the tool in two locations where terrace maps were previously developed via manual digitization from lidar and extensive field mapping campaigns. The tool is also tested on six different types of rivers to provide examples of starting selection parameters, and to test effectiveness of the tool across a wide range of landscapes. Generally, the tool provides a high quality draft map of terrace and floodplain surfaces across the wide range of environmental conditions for which it has been tested. We find that the tool functions best in catchments where the terraces are spatially extensive, with distinct differences between the terrace and floodplain. The most challenging environments for semi‐automated terrace and floodplain mapping include steep catchments with dense riparian vegetation, and very small terraces (~10 m2 in areal extent). We then apply the tool to map terraces and floodplains in the Root River watershed, southeastern Minnesota and generate exceedance plots for terrace heights. These plots provide a first pass analysis to indicate the tributaries and reaches of the river where terraces constitute a significant source of sediment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents work from a geomorphological investigation carried out in the Aradena Gorge, southwestern Crete, Greece. The gorge is typical of many steepland fluvial systems in the Mediterranean, with steep relief, coarse‐gravel sediments and high rates of sedimentation generated during intense winter storm events. Hillslope deposits and coarse‐gravel flood units within a 5 km section of the gorge have been mapped, dated (using lichenometry and dendrochronology), and their sedimentological characteristics recorded to establish a c. 200‐year record of flood frequency/magnitude and hillslope/channel sediment supply variability. This record has been compared with instrumented and previously published records of climate change from Crete and the Mediterranean region and used to establish the major controls on flooding and sediment dynamics within the Aradena Gorge. Rates of colluviation and sediment delivery to the channel appear to have been greater than the present sometime before c. AD 1800 and may be related to cooler climates with a more seasonal precipitation regime during the Little Ice Age (c. AD 1450 to 1850). In gorge sections where the present rate of sediment supply from hillslope colluvium is very low, the channel has incised into older alluvial and colluvial deposits. Conversely, in the few sections where sediment supply is currently very high, the channel is aggrading with a braided pattern. Major rock‐fall deposits at certain locations in the gorge have restricted any major downstream sediment transfer. Twelve periods of increased flooding during the last 150 years have been identified and these correlate quite well with negative or declining phases of the North Atlantic Oscillation (NAO). Analysis of daily precipitation data from Crete suggests negative phases of the winter NAO are characterized by an increase in the number of long‐duration, high‐intensity storms. These storms, particularly those with five‐day and greater duration, appear to be significant in triggering major floods in the Aradena Gorge. During the last 40 years the NAO index has been increasing and become locked into a positive phase. As a consequence of this, major flooding appears to have declined during the same period. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Avulsions – relatively sudden changes in course, or establishment of new anabranches – are an important process in alluvial rivers. Their key role in floodplain construction and alluvial architecture, and the general conditions favouring avulsions, are well known. However, avulsion processes and evolution, and the factors controlling avulsion regimes, are poorly understood. In the southeast Texas coastal plain, where avulsions are common features of the river valleys, avulsions were studied on the lower Brazos, Navasota, Trinity, Neches and Sabine rivers using a combination of aerial imagery, digital elevation models and field surveys. Avulsions have important influences on the surface morphology and contemporary processes in all five rivers. Features associated with avulsions are active and distinct throughout the study area, and all the rivers have experienced geologically (if not historically) recent avulsions. However, no two of the study rivers have the same contemporary avulsion regime. First‐order differences in avulsion style are controlled by the stage of valley filling, and within the three rivers characterized by an unfilled incised valley, antecedent morphology associated with late Quaternary and Holocene coastal and fluvial‐deltaic processes accounts for the major differences. In the Navasota (27 avulsions in 185 km) and Neches (21 in 340 km) rivers, subchannels associated with avulsions exist in all stages of development from active to infilled, and some have occurred in recent decades. The other rivers have fewer avulsions, but both the Sabine and Trinity have experienced historic channel shifts. Only the Brazos River has experienced no avulsions within the past c. 300 years. Results show that even within a region of similar environmental controls and geological history local variations in inherited morphology can result in different avulsion regimes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A detailed study of the morphology and micro‐morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The ‘simple’ profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic horizon near the land surface. The ‘complex’ profiles reflect the occurrence of multiple calcrete events during terrace sediment aggradation and further periods of pedogenesis after terrace formation. These ‘complex’ calcrete profiles are consequently described as composite profiles. The exact morphology of the composite profiles depends upon: (1) the number of calcrete‐forming events occurring during terrace sediment aggradation; (2) the amount of sediment accretion that occurs between each period of calcrete formation; and (3) the degree of pedogenesis after terrace formation. Simple calcrete profiles are most useful in establishing landform chronologies because they represent a single phase of pedogenesis after terrace formation. Composite profiles are more problematic. Pedogenic calcretes that form within them may inherit carbonate from calcrete horizons occurring lower down in the terrace sediments. In addition erosion may lead to the exhumation of older calcretes within the terrace sediment. Calcrete ‘inheritance’ may make pedogenic horizons appear more mature than they actually are and produce horizons containing carbonate embracing a range of ages. Calcrete exhumation exposes calcrete horizons whose morphology and radiometric ages are wholly unrelated to terrace surface age. Composite profiles are, therefore, only suitable for chronological studies if the pedogenic horizon capping the terrace sequence can be clearly distinguished from earlier calcrete‐forming events. Thus, a detailed morphological/micro‐morphological study is required before any chronological study is undertaken. This is the only way to establish whether particular calcrete profiles are suitable for dating purposes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha−1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha−1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
Suspended‐sediment concentration data are a missing link in reconstructions of the River Waal in the early 1800s. These reconstructions serve as a basis for assessing the long‐term effects of major interventions carried out between 1850 AD and the early 20th century. We used a 2D physics‐based morphodynamic model accounting for the influence of floodplain vegetation to fill in this gap. Historical discharge hydrographs were derived from a correlation between flow discharge records at Cologne and water level measurements of the Rhine branches in the Netherlands, taking into account the discharge distribution between the branches. Historical floodplain sedimentation rates were estimated using old cartographic information and recent geomorphologic field work. The computed historical sedimentation rates are found to be within the range of measured data, which suggests that fine suspended sediment concentrations in the early 1800s were comparable to contemporary ones. The computations show also how vegetation enhances the formation of natural levees close to the main channel and at the same time decreases the sedimentation rates in farther areas of the floodplain. A sensitivity analysis shows suspended sediment composition to have a strong influence on the resulting quantities and patterns of floodplain deposition. The reconstruction has also provided validation of the modelling tools to reproduce the effects of vegetation on sediment dynamics, enabling their implementation to study other cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Sedimentary deposits provide records of environmental change quantifying erosion fluxes conditioned by natural and anthropogenic disturbances. These fluxes are lagged by internal storage, particularly within floodplains, complicating reconstruction of environmental changes. The time sediment remains in storage underpins the interpretation of sedimentary records and accurate monitoring of pollutant fluxes. Turnover time is a measure of the timeframe to erode every floodplain surface. CAESAR-Lisflood is used to simulate fluvial evolution at reach scale, providing a basis for quantifying environmental changes on the timescales of sediment storage. We evaluate the accuracy of CAESAR-Lisflood simulations of channel changes and turnover times for alluvial floodplains using historical channel changes reconstructed for 10 reaches in northern England to quantify model accuracy in replicating mean annual erosion, deposition and channel lateral migration rates, alongside planform morphology. Here, a split-sample testing approach is adopted, whereby five of the reaches were calibrated and the resulting parameter values were applied to the other reaches to evaluate the transferability of parameter settings. The lowest overall integrated error identified the best-fit simulations and showed that modelled process rates were within ~25–50% of rates from historical reconstructions, generally. Calibrated parameters for some reaches are widely transferable, producing accurate geomorphic changes for some uncalibrated sites. However, large errors along some reaches indicate that reach-specific parameterization is recommended. Turnover times are underpinned by the assumption that areas of floodplain previously unvisited by the channel are reworked. This assumption has been challenged by studies that show floodplain (re)occupation rates vary spatially. However, this limitation is less important for the short-duration simulations presented here. The simulations reconstruct floodplain turnover times estimated by mapped rates mostly successfully, demonstrating the potential applicability of calibrated parameters over much longer timescales. Errors in the form of under-predicted erosion rates propagated, resulting in over-predicted turnover times by even greater magnitudes. © 2020 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

19.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A combination of archaeological evidence, 14C dates, terrace mapping, heavy metal analysis, grain size analysis and historical maps is used in a detailed analysis of the alluvial history of the River Severn floodplain around Welshpool in mid-Wales, U.K. ‘Welshpool Gravels’ underlie a higher terrace surface up to 6–7 m above the present channel. They form a sequence of gravels at least 30 m in thickness. The upper surface is characterized by a series of braided palaeochannel patterns. These sediments were probably deposited at the end of the last glaciation as outwash, and are contemporaneous with other high, gravelly terrace deposits found in the Severn and other mid-Wales basins. Overlying the Welshpool Gravels on the contemporary floodplain are a variable thickness of finer sediments, the ‘Leighton Silts’. Morphological mapping and dating of two cut-offs to 2850 ± 60 a BP and 1190 ± 70 a BP indicates that a channel pattern similar to the present planform had formed by the mid to late Holocene. From this period, floodplain development has been dominated by a single-thread meandering channel with fine vertical sedimentation and limited lateral gravel accretion. Abandonment of extended lengths of channel formed by an avulsion mechanism is apparent. A combination of historical map data, 14C dates and the analysis for heavy metals in fine sediments, which were washed into the river system during mining, indicates that there has been at least 4 m of sedimentation since the early 17th century, but only in a central belt of varying width. Metal-rich waste, identified in the fine sediments of this zone of ‘Trehelig Silts’, indicates those areas which were most heavily sedimented during the peak of metalliferous mining in the 18th and 19th centuries. Although the near-channel margins appear to be superficially similar to the older floodplain, the spatial and vertical pattern of historic sedimentation is complex, and is not reflected in marked elevation differences. The division of sedimentation periods into these three broad time-spans (Late Quaternary Terraces, Late Holocene alluviation and avulsion, and the historical metal-mining period) shows that an apparently simple planar floodplain is in reality underlain by complex sedimentation units. Floodplain construction has involved the development of inset units, in cut-offs and adjacent to migrating channels, as well as the expected contrasts between in-channel and overbank environments. This has implications both for alluvial sedimentation modelling and for the identification of high-pollution zones on the floodplain. These cannot be predicted on the basis of simple ‘in-channel’ and ‘overbank’ environments given the historically complex evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号