首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ecological impacts of introduced seaweeds have been relatively understudied. Current research suggests that seaweed invasions often result in alterations of native marine communities and disruptions of normal ecosystem functioning, but the effects on native communities can vary among invasive seaweed species, among habitats and over small and large spatial scales. In this study, the impacts of Sargassum muticum, a non‐native brown alga introduced into southern California, USA, several decades ago, were examined by comparing community structure in rocky inter‐tidal pools with and without the seaweed. Sargassum muticum appeared to have little impact on the native community despite measures revealing changes in the abiotic conditions of pools, with S. muticum presence reducing light penetration and ameliorating pool temperature changes during low tides. In other regions and habitat types, S. muticum presence often, but not consistently, resulted in declines in macrophyte diversity and/or abundance and increases in faunal assemblages. The lack of effects of S. muticum in this study, combined with variable impacts by S. muticum and other invasive seaweeds worldwide, suggests that predicting the effects of introduced seaweeds is problematic and warrants further research. Regardless of the effects on native communities, there is often a desire to eradicate or control the spread of non‐native seaweeds. In this study, localized S. muticum eradication attempts, including manipulations of a native canopy and herbivorous urchins, proved unsuccessful as full recovery occurred in ~9 months. While eradication efforts conducted worldwide have resulted in mixed success, there is a trend that early detection and rapid response can increase success, highlighting a need for systematic monitoring and establishment of regional rapid response plans.  相似文献   

2.
3.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors (e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats (Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness.  相似文献   

4.
The growth dynamics of two co‐occurring seagrass species, Zostera marina and Halophila nipponica, were examined on the southern coast of the Korean peninsula. Zostera marina is a native dominant seagrass species in Korean coastal waters, whereas H. nipponica is a non‐native tropical and subtropical species that has extended its distributional range to the temperate coastal areas of Korea. To examine the differences in the growth dynamics of H. nipponica and Z marina, their morphology, density, productivity and biomass, as well as local environmental conditions, were monitored monthly from January 2008 to July 2009. Underwater irradiance at the study site was the highest in April 2009 and the lowest in January 2008. Water temperature ranged from 10.4°C in January 2009 to 24.8°C in September 2008. Significant differences in growth dynamics were observed between the species, due to the effect of water temperature at the study site. Density and areal productivity were the highest in April 2008 and June 2008, respectively, for Z marina but the highest in July 2008 for H. nipponica. Leaf size, shoot height and shoot weight were the highest in July 2008 for Z marina but the highest in August 2008 or September 2008 for H. nipponica. The productivity of both species was strongly correlated with water temperature at the study site. However, the productivity of these species was not strongly correlated with underwater irradiance or the nutrient availability of either the water column or sediment pore water. Zostera marina exhibited the ecological characteristics of a temperate seagrass, whereas H. nipponica retained the features of a subtropical/tropical seagrass, even after adapting to the temperate coastal waters of Korea.  相似文献   

5.
Invasive species represent a serious threat to natural ecosystems through a range of negative effects on native species in the region invaded. The invasive species Sargassum muticum has invaded several temperate regions worldwide including the Galician rocky shoreline (northwestern Spain) in Western Europe. The main aim of this study was to assess if colonization by S. muticum has any effect on native algal assemblages by experimental removal of S. muticum. We predicted that in those plots where S. muticum plants were removed, the structure of native algal assemblages would differ from that in plots where S. muticum plants were untouched. In addition, we predicted that the effect of Sargassum removal would be more important than other causes of variability at the small scale investigated. Results indicated limited impact of S. muticum on native assemblages. The impact was only evident on the total number of native taxa and two understory morpho-functional groups, filamentous and foliose algae, rather than on the entire macroalgal assemblages.  相似文献   

6.
We conducted a field experiment to assess the response of phytal harpacticoids to nutrient‐driven increases of epiphyte load in Posidonia oceanica meadows. First, we evaluated differences in species richness, diversity and assemblage structure of phytal harpacticoids in P. oceanica meadows with differing epiphyte loads. Secondly, we conducted a field experiment where epiphyte load was increased through an in situ addition of nutrients to the water column and evaluated the responses of the harpacticoid assemblages. We predicted that there would be changes in the harpacticoid assemblages as a result of nutrient‐driven increases of epiphyte load, and that these changes would be of a larger magnitude in meadows of low epiphyte load. Our results show that the harpacticoid fauna (>500 μm) present in P. oceanica meadows in the Bay of Palma comprised taxa which are considered phytal and other less abundant ones previously described as sediment dwellers or commensal on other invertebrate species. Nutrient addition had an overall significant effect on epiphyte biomass and on harpacticoid abundance, diversity and assemblage structure, possibly as a response to the increased resources and habitat complexity provided by epiphytes. The abundance of dominant species at each location was favoured by nutrient addition and in some cases correlated with epiphytic biomass, although never strongly. This may indicate that structural complexity or diversity of the epiphytic cover might be more important than the actual epiphytic biomass for the harpacticoid species investigated. More species‐specific studies are necessary to ascertain this and clarify the relationships between harpacticoids and epiphytes in seagrass meadows. To our knowledge, this is the first account of harpacticoid species associated with P. oceanica leaves and the epiphytic community they harbour in the Mediterranean Sea.  相似文献   

7.
Introduced habitat-providing organisms such as epibenthic bivalves may facilitate the invasion and expansion of further non-native species which may modify the effects of the primary invader on the native system. In the sedimentary intertidal Wadden Sea (south-eastern North Sea) introduced Pacific oysters (Crassostrea gigas) have overgrown native blue mussel beds (Mytilus edulis). These oyster beds are now providing the major attachment substratum for macroalgae. Recently, oysters have expanded their distribution into the shallow subtidal zone of the Wadden Sea, and there support a rich associated species community including the Japanese seaweed Sargassum muticum, which has been presumably introduced together with the oysters. With a block designed field experiment, we explored the effects of S. muticum on the associated community of soft-bottom C. gigas beds in the shallow subtidal. Replicated oyster plots of 1 m2 were arranged with a density of 0, 7, 15 or 45 S. muticum m? 2, respectively. We found no effects of different S. muticum densities on associated epi- and endobenthic community compositions associated to the oyster plots. However, the overall coverage of sessile organisms settling on the oyster shells was significantly reduced at high S. muticum densities. The occurrence of abundant native macro-algal species such as Polysiphonia nigrescens, Antithamnion plumula and Elachista fucicola decreased with increasing S. muticum densities. Sessile invertebrates, by contrast, were only marginally affected and we found no effects of S. muticum canopy on diversity and abundance of endofauna organisms. We conclude that increasing densities of S. muticum on C. gigas beds in the shallow subtidal zone of the Wadden Sea limit the occurrence of native macroalgae which otherwise would benefit from the additional hard substratum provided by the oysters. Thus, a secondary invader may abolish the effects of the primary invader for native species by occupying the new formed niche.  相似文献   

8.
Epifaunal invertebrate species, such as amphipods and isopods, have been shown to play key but varying roles in the functioning of seagrass habitats. In this study, we characterized patterns in the poorly known epifaunal communities in eelgrass (Zostera marina) beds in San Francisco Bay as a first step in understanding the individual and collective importance of these species, while testing predictions on spatial patterns derived from previous studies in other regions. Surveys conducted at five beds across multiple time periods (April, June, August and October 2007) showed that San Francisco Bay eelgrass beds varied strongly in epifaunal community composition, total, and relative abundance, and that abundance differed markedly among time periods. In contrast to findings by others, morphologically complex flowering shoots frequently harbored greater numbers of epifauna (>2× and up to 10× more individuals) than vegetative shoots, but not different species assemblages. Similar to previous studies, several abiotic factors did not explain patterns in distribution and abundance among beds. The proportion of introduced species was very high (>90% of all individuals), a finding unique among seagrass epifaunal studies to date. Defining numerical patterns in epifaunal communities will inform related efforts to understand effects of epifaunal species and assemblages on eelgrass growth dynamics, seed production, and higher order trophic interactions over space and time.  相似文献   

9.
Spatial patterns of non-indigenous species show scale-dependent properties. Sargassum muticum is an invasive macroalga widely distributed along the Atlantic Iberian Peninsula. Despite being quite abundant from Norway to South Portugal, there is little information about its patterns of distribution, particularly at a large spatial scale (i.e. thousands of kilometres). Here, we examined the spatial variation in the invasion success of S. muticum from rockpools at multiple spatial scales using a hierarchical design. In addition, we analysed how the richness of native assemblages was related to its invasion success and how this relationship changed over different scales. Most of the variation in the invasion success was found at the smallest scales of pool and plot. Furthermore, the invasibility of native macroalgal assemblages was related to the native species richness, but causes that determined invasion success could not be separated from the effects provoked by the invader. Results suggest that small-scale (centimetres to metres) processes contribute considerably to the heterogeneity of S. muticum invasion success.  相似文献   

10.
The neritid Smaragdia viridis represents the only known native marine mollusc that feeds on seagrass tissues in the European coasts, displaying a strong association with the seagrasses Cymodocea nodosa and Zostera marina in southern Spain. Seasonal dynamics, shell and radular morphology, growth and feeding of this gastropod have been studied in relation to each seagrass species for contrasting trends resulting from a different type of substrate and food source. In both seagrass species, stable populations of this gastropod occur at similar densities and displaying similar growth rates. Nevertheless shells of individuals from C. nodosa are narrower than those from Z. marina and some differences, possibly a consequence of increased wearing on C. nodosa, were noted amongst the radulae. In C. nodosa, a pre-ingestive selection for young epidermal tissues occurs as it was previously observed in Z. marina. The ingestion rate is higher in C. nodosa than in Z. marina but the absorption of ingested tissues is lower in the former. If both seagrasses are present, most individuals ingested preferentially Z. marina rather than C. nodosa, probably due to the lower digestibility of the epidermal tissues in the latter. Seagrass beds, especially those of Z. marina, are suffering a strong regression in southern Spain and the presence of stable populations of this neritid may be restricted to other declining seagrass species in the area.  相似文献   

11.
A new probabilistic approach is proposed to assess muricid species population abundances at scales relevant to both Ancient and Modern coastal fisheries. Motivated by the long‐term goal of reconstructing the dynamics of exploited murex populations during Antiquity, the objective was to estimate the population density of the banded dye‐murex, Hexaplex trunculus (Linnaeus, 1758) from successive captures with baited traps, using a method similar to the technique employed in the Mediterranean purple dye industry. The stochastic model developed simulates cumulative captures while accounting for high variability. It was calibrated with data acquired during a field trapping experiment (Crete Island, Greece). Traps’ catchability and Effective Area of Attraction (EAA) were estimated using the individual speed and behavioural response towards bait from laboratory experiments. Average density of H. trunculus was estimated as 2.2 ± 1.4 SE individuals per square metre, with no significant differences between seagrass and rocky habitats. The clearing time of successive capture experiments averaged 84 ± 6 SE hr. Clearing ca. 0.4 ha of subtidal area would be necessary to produce ca. 1.0 g of pure Tyrian purple pigment. The method described is generalizable to making population abundance estimates for similar groups, such as whelks, in modern fisheries.  相似文献   

12.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   

13.
This study investigated the community structure and functional traits of the mollusk fauna associated with macroalgae with different thallus morphologies in a reef environment in Northeastern Brazil. A total of 15 individuals of each species of macroalgae adhered to natural substrate and 15 individuals of Padina gymnospora detached from the substrate were collected. The structural complexity of algal habitats was measured and the associated malacofauna screened and identified. All three macroalgae differed significantly in the complexity of their habitat, with Sargassum polyceratium being the most complex. A total of 823 specimens of mollusks belonging to 22 species and 11 families were recorded, of which Columbellidae was the most represented with six species. The functional trait “size” revealed that micromollusks smaller than 10 millimeters were predominant in the community; however, individuals of larger sizes (up to 24.54 millimeters) belonging to young stages of other species were also present. Eight functional trophic groups were identified, of which “carnivorous” stood out with seven species. Six functional groups of microhabitats were identified, with intra‐specific variation in habitats, while habitat expansion was documented for species not yet recorded in association with macroalgae. The structure of the molluskan community differed among the three algae species with the greatest richness, abundance, and diversity of mollusks and functional traits occurring with S. polyceratium. Community structure differed between algae adhered to natural substrate and detached algae, with the latter having lower mollusk richness and diversity, but with greater abundance of some species that remained on algal fronds after release from the reef environment. This study reinforces the importance of algal habitat for marine invertebrate fauna, especially for micromollusks that spend their entire life cycle, or part of it, in association with macroalgae.  相似文献   

14.
Marine turtles are considered keystone consumers in tropical coastal ecosystems and their decline through overexploitation has been implicated in the deterioration of reefs and seagrass pastures in the Caribbean. In the present study, we analysed stomach contents of green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) harvested in the legal turtle fishery of the Turks and Caicos Islands (Caribbean) during 2008–2010. Small juveniles to adult‐sized turtles were sampled. Together with data from habitat surveys, we assessed diet composition and the taxonomic distinctness (and other species diversity measures) in the diets of these sympatric marine turtle species. The diet of green turtles (n = 92) consisted of a total of 47 taxa: including three species of seagrass (present in 99% of individuals), 29 species of algae and eight sponge species. Hawksbill turtles (n = 45) consumed 73 taxa and were largely spongivorous (16 species; sponges present in 100% of individuals) but also foraged on 50 species of algae (present in 73% of individuals) and three species of seagrass. Plastics were found in trace amounts in 4% of green turtle and 9% of hawksbill turtle stomach samples. We expected to find changes in diet that might reflect ontogenetic shifts from small (oceanic‐pelagic) turtles to larger (coastal‐benthic) turtles. Dietary composition (abundance and biomass), however, did not change significantly with turtle size, although average taxonomic distinctness was lower in larger green turtles. There was little overlap in prey between the two turtle species, suggesting niche separation. Taxonomic distinctness routines indicated that green turtles had the most selective diet, whereas hawksbill turtles were less selective than expected when compared with the relative frequency and biomass of diet items. We discuss these findings in relation to the likely important trophic roles that these sympatric turtle species play in reef and seagrass habitats.  相似文献   

15.
The present study explores the distribution of the invasive herbivore fish Siganus luridus (Rüppell 1829) and its relationship to native herbivores and macroalgal assemblages in the shallow sublittoral of the Cyclades Archipelago, Aegean Sea, Greece. In situ underwater surveys of herbivore abundance (fishes and sea urchins) and algal coverage were carried out at 180 sampling sites in 18 islands. Siganus luridus accounted for 17% of the total herbivore abundance, with a decrease in relative abundance from the southeastern to the northwestern islands. In Santorini Island (in the southeast of the study area) S. luridus abundance accounted for 90% of the total herbivore fish abundance, while in Kea Island (at the northwestern limit of the study area), S. luridus was absent. The spatial variation of minimum sea surface temperature is possibly the reason for its distributional pattern. Siganus luridus abundance was found to be positively correlated to the native herbivore Sparisoma cretense (Linnaeus 1758). A significant negative relationship was found between the abundance of the invasive species and the sum of erect and canopy algae cover (Dictyotales and Cystoseira spp.), which are the main components of its diet in the region. On the other hand, its occurrence was particularly high in barren sites. The results arising from this study reinforce evidence from studies in the Eastern Mediterranean Basin that the expansion of the invasive species S. luridus may have profound impacts on native communities in the Mediterranean infralittoral zone.  相似文献   

16.
Although several studies have evaluated the genetic structure and phylogeographic patterns in many species of marine invertebrates, a general model that applies to all of them remains elusive. For example, some species present an admixture of populations with high gene flow, whereas others exhibit more complex patterns characterized by small‐scale unstructured genetic heterogeneity, even at a local scale. These differences are thought to be due to clear biological aspects such as direct versus indirect development, or the presence of lecithotrophic versus planktotrophic larvae, but few studies compare animals with similar distributions and life modes. Here, we explore the phylogeographic and genetic structure patterns in two chiton (Chiton olivaceus and Lepidopleurus cajetanus) and one abalone (Haliotis tuberculata) species co‐occurring in the same habitat. Samples were obtained from shallow rocky bottoms along the Iberian Peninsula (Atlantic and Mediterranean coasts), Italy, Croatia and Greece, and the mitochondrial markers COI and 16S rRNA gene were sequenced. Our data show evidence of admixture and population expansion in C. olivaceus and H. tuberculata, whereas L. cajetanus exhibited a ‘chaotic patchiness’ pattern defined by a high genetic variability with locality‐exclusive haplotypes, high genetic divergence, and a lack of geographic structure. Shared haplotypes were sampled in both coasts of Iberia (for H. tuberculata) and in the Western and Eastern Mediterranean (for C. olivaceus), potentially indicating high dispersal ability and a recent expansion. The processes underlying the fine‐scale structuring in L. cajetanus remain a mystery. These results are especially interesting because the reproductive mode of the two chitons is similar but differs from that of the abalone, with a veliger larva, while instead the genetic structure of C. olivaceus and H. tuberculata are similar, thus contrasting with predictions based on the life history of the three molluscs and showing that the genetic patterns of marine species may be shaped by many factors, including historical ones.  相似文献   

17.
To elucidate which environmental factors affect lagoonal‐scale sea cucumber distributions in Ishigaki Island, Okinawa, Japan, intertidal and subtidal areas of three coral reef lagoons were classified into several ground divisions by bottom characteristics, and sea cucumber densities therein were compared with the composition of sediment cover, grain size and organic content, and coverage of macroalgae, seagrass, and massive corals. Holothuria atra, Holothuria leucospilota, Stichopus chloronotus, and Synapta maculata had highest densities in the nearshore areas but were rare in reef flats, probably because of wave disturbance and low areal cover of sand sediment as potential feeding environments. No relationship was observed between sea cucumber densities and sediment organic content or grain size. Thus, even if these sea cucumbers have selectivity for habitats with a high sediment organic content, the effect of such selectivity on the distribution seems to be limited to relatively small areas. The sea cucumber distributions can be classified by bottom sediment/biota composition into bedrock (H. leucospilota), sand (H. atra), and lagoonal types (St. chloronotus and Sy. maculata). These habitat selections were possibly related to various aspects of sea cucumber ecology such as refuge from predators or turbulence, or settlement and nursery place, which have implications for importance of the complexity of lagoonal‐scale topography and sediment/biota conditions for the coexistence of various holothurian species.  相似文献   

18.
The decapod assemblages associated with two shallow meadows of Cymodocea nodosa, located in the same geographical area (Southern Spain) but on different substrates and with different patch size, have been analyzed. They display similar structure (diversity indices not significantly different), without a clear relation of richness and abundances to patch size, and with the same dominant species (the family Hippolytidae and, in particular, Hippolyte leptocerus are characteristic of this habitat). The composition of both crustacean assemblages is influenced by species that are common in neighbouring habitats. Therefore the connectivity among them is an important factor in the qualitative and quantitative structure of these decapod communities. Species richness appears to be higher than in Cymodocea meadows elsewhere in the Mediterranean and Atlantic at a similar depth, perhaps as a consequence of the biogeographical location and the high diversity and connectivity with surrounding biotopes. High evenness values are the result of the structure and location of these meadows, which are fragmented and interspersed with other biotopes (sandy and rocky bottoms), resulting in an ‘ecotone effect’. On the other hand, the structures of the decapod assemblages differ significantly according to sampling period. The abundance and species richness are both related to plant phenology and the dominant species present a positive correlation with the number of leaves per shoot. The maximum abundance of many species is coincident with the greatest seagrass development (spring – summer), which provides more resources (surface, biomass, protection, food). Therefore, seasonality is linked to plant life cycle, but also to the interrelationships and biology of the species, which are adapted and specialized to the environmental features of these shallow habitats.  相似文献   

19.
Native and exotic seaweeds frequently lie on the beach and sustain part of the benthic food web. However, the role of exotic seaweeds as food sources for beach consumers has been poorly studied. We studied the temporal and spatial variability in the trophic significance of the invasive brown seaweed Sargassum muticum on sandy beaches. We measured the stable isotopes (δ13C and δ15N) in the tissues of S. muticum and of invertebrate consumers and estimated the dietary biomass proportion of S. muticum during four sampling dates at two beaches and heights on the shore. Samples were collected from eight pitfall traps placed at a distance of 2 m from each other. Detrital macroalgae and seagrasses were also collected by hand within an area of 30 cm around each pitfall trap. We measured the spatial and temporal variability in the isotope composition of the beach consumers and of S. muticum using different models of analyses of variance. We then calculated the biomass proportion of S. muticum to the animal diet with a two-isotopic mixing model. The invasive alga S. muticum seemed to be one of the main food sources for the amphipod Talitrus saltator and, to a less extent, for the isopod Tylos europaeus. The importance of S. muticum was however temporally variable and decreased during spring (in March and May), probably due to the availability of native macrophytes. The supply of invasive wrack to beach food webs thus deserves more attention if we want to understand their role in influencing food web dynamics.  相似文献   

20.
Size‐frequency distributions can support reliable inferences concerning population dynamics of brachiopods, but only a few data are available so far. In this study, length and width frequency distributions of dead specimens of the Recent brachiopods Joania cordata and Argyrotheca cuneata from the Marine Protected Area ‘Secche di Tor Paterno’, Central Tyrrhenian Sea, Italy (41°35′ N, 12°20′ E), are reported in order to add new data about size‐frequency distributions of brachiopods. The studied specimens came from death assemblages in the coralligenous substrate, in the Posidonia oceanica meadows, and in the sand channels. The observed patterns vary from left‐skewed (J. cordata) to right‐skewed (A. cuneata), indicating respectively a low and high mortality of smaller individuals. Significant differences between the coralligenous substrate and the P. oceanica meadow were observed for both species, revealing a variation among different habitats. All length and width distributions are clearly polymodal, but the biological meaning of the peaks is difficult to interpret, as the two species seem to have a 2‐year life span. A biometric analysis of shell sizes revealed that length and width are the most variable parameters during the growth of the animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号