首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three magmatic units (Grande Cascade pyroclastic deposits, Grande Cascade lava flow, Durbise nuée ardente deposits) from the Quaternary volcano Sancy (Mont-Dore area, Auvergne, France) show textural evidences of magma mixing between a silica undersaturated basic magma (alkali basalt and hawaiite) and an acid magma (quartz-bearing trachyte). Three kinds of mixed rock types are described: basic inclusions within an acid host, « emulsified rocks » showing infracentimetric basic globules disseminated within an acid groundmass, and « banded rocks » in which elongated acid and basic zones alternate. The chemical compositions of mixed rocks plot systematically onto linear trends in petrographic diagrams. Microprobe analyses of the groundmass show similar linear variations between basic and acid end-members. The mineralogical associations of these mixed rocks are highly complex and present many disequilibrium features. Olivine is stable in the basic component and becomes rimmed by orthopyroxene in the acid one. Zoning patterns of feldspars are complex. Clinopyroxene, kaersutite and phlogopite phenocrysts have increasing component Mg contents from core to rim both in the basic and the acid. Titanomagnetite and hemoilmenite phenocrysts were equilibrated at 900-800° C under high oxygen fugacities.Mixing results primarily from a mechanical disintegration of partly liquid basic inclusions within their acid host, and also from a mechanical transfer of phenocrysts from one component to the other, in which they often remain surrounded by a coating of their original groundmass. Chemical data on the groundmass indicates that some « true » hybridization between coexisting acid and basic liquids may also have occurred. The extent of mixing is controlled by the type of emplacement. For pyroclastic deposits a chemical gap exists between basic inclusions and their acid hosts; in contrast, mechanical mixing was enhanced during the emplacement of the viscous Grande Cascade lava flow, and complete transitions occur between basic and acid components. The two end-members are genetically associated, the latter deriving from the former by crystal fractionation. Mixing appears as a late-stage phenomenon in the petrogenetic history of the Mont-Dore series; in the case of the Grande Cascade lava flow, its extent is primarily dependent on emplacement modalities.  相似文献   

2.
The November 13, 1985 eruption of Nevado del Ruiz produced a series of pyroclastic flows and surges that eroded channels on the surface of the summit glacier and generated lahars which descended down most of the rivers that drain the volcano. The stratigraphy of the proximal pyroclastic deposits indicates that there were at least four episodes to the eruption. Episode I, deposited an unusual surge consisting of small pieces of ice mixed with ash and exhibiting planar stratification. Ballistically emplaced fragments are also intercalated with this unit. During Episode II, at least two pyroclastic flows were erupted. Their deposits contain the most evolved pumice of the entire eruption; SiO2 content of matrix glass ranges between 74.5 and 74.9%. Episode III is marked by the emplacement of a welded tuff with an average SiO2 content of about 66% in the matrix glass. The final Episode IV was characterized by the development of a high-altitude eruption column and the emplacement of several nonwelded pyroclastic flows. Banded pumice are common in the pyroclastic flow as well as in the pumice fall deposits. Co-existing dark and light pumice bands differ in SiO2 content by 3.5% and in general are similar to the composition of the welded pumice from Episode III.The compositional zonation of the pyroclastic deposits from Episode I to IV suggests that a nearsurface compositionally-stratified portion of the magma body was tapped during Episode II. During Episodes III and IV the main body of magma was involved although the coexistence of the compositionally distinct pumice clasts at similar stratigraphic levels argues for mixing of magma from different levels in the chamber during the eruptive process.  相似文献   

3.
The Mianning-Dechang REE metallogenetic belt is among the most important of its kind in China. The typical geologic features and multiple economically- valuable components in this belt have caught attention from more and more geologists. Wide investigations from petrology, petrochemistry to rare earth and trace element geochemistry, have been carried out recently, and a large quantity of geochemical data have already been obtained[1―11]. Maoniuping REE deposit is the largest of this belt,…  相似文献   

4.
Most if not all kimberlite pipes show a multitude of facies types, which imply that the pipes were emplaced under an episodic re-occurrence of eruptive phases, often with intermittent phases of volcanic quiescence. The majority of these facies can be related to either the fragmentation behaviour of the magma during emplacement or changing conditions during sedimentation of volcaniclastic deposits, as well as their alteration and compaction after deposition. An additional factor controlling pipe-facies architecture is the degree of mobility of the loci of explosions in the explosion chambers of the root zone or root zones at the base of the maar-diatreme volcano. In a growing pipe, the root zone moves downward and, with that movement, the overlying diatreme enlarges both in size and diameter. However, during the life span of the volcano, the explosion chamber can also move upward, back into the lower diatreme, where renewed explosions result in the destruction of older deposits and their structures. Next to vertical shifts of explosion chambers, the loci of explosions can also move laterally along the feeder dyke or dyke swarm. This mobility of explosion chambers results in a highly complex facies architecture in which a pipe can be composed of several separate root zones that are overlain by an amalgamated, crosscutting diatreme and maar crater with several lobes. Pipe complexity is amplified by periodic changes of the fragmentation behaviour and explosivity of kimberlite magma. Recent mapping and logging results of Canadian and African kimberlite pipes suggest that kimberlite magma fragmentation ranges from highly explosive with abundant entrained country rock fragments to weakly explosive spatter-like production with scarce xenoliths. On occasions, spatter may even reconstitute and form a texturally coherent deposit on the crater floor. In addition, ascending kimberlite magma can pass the loci of earlier fragmentation events in the root zone and intrudes as coherent hypabyssal kimberlite dykes in high pipe levels or forms extrusive lava lakes or flows on the crater floor or the syneruptive land surface, respectively. This highly variable emplacement behaviour is typical for basaltic maar-diatreme volcanoes and since similar deposits can also be found in kimberlites, it can be concluded that also the volcanological processes leading to these deposits are similar to the ones observed in basaltic pipes.  相似文献   

5.
The paper briefly describes the characteristics of the Chilean porphyry copper deposits, emphasizing the volcanic characteristics observed in the youngest ore bodies. Mention is made of the polymetallic ore bodies that are associated with rhyolitic porphyries intruding Jurassic sedimentary formations in the north of Chile, and the similarities and differences between the Chilean porphyry coppers and the Bolivian tin-bearing porphyries are pointed out.The models proposed by Sillitoe (1972), Brousse and Oyarzún (1971), and Mitchell and Garson (1972), are discussed and a new model is proposed agreeing with that of Mitchell and Garson for the genesis of the tin-bearing porphyries (the transportation of Sn as volatile halogenide by F liberated in the Benioff zone), but suggesting different generating mechanism for the porphyry coppers and polymetallic deposits related with porphyries. This mechanism, as a part of the global tectonic model, is based on the separation at depth of hydrogen sulphide from pyrite and water introduced with the upper layers of the lithospheric plate. The ascending migration of H2S to high levels in the crust would be responsible for the porphyry copper mineralization by segregating sulphides of Fe, Cu, Mo and other sulphophile metals contained in the calc-alkaline magmas, brines, or sedimentary-volcanic formations intruded by the porphyries. The excess of H2S would give rise to the formation of sulphur deposits normally present in the volcanic belt situated along the same line but at a higher level than those of the emplacement of porphyry coppers.The generation of copper and tin-bearing porphyries would be a consequence of the upward migration of volatile substances from different depths in the subduction zone, which explain its different emplacement with regards to the continental margins.  相似文献   

6.
Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200–440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10–30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300–400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the emplacement temperatures of different kimberlite facies.  相似文献   

7.
An analysis of local seismicity within the Avacha–Koryakskii Volcanic Cluster during the 2000–2016 period revealed a sequence of plane-oriented earthquake clusters that we interpret as a process of dike and sill emplacement. The highest magmatic activity occurred in timing with the 2008–2009 steam–gas eruption of Koryakskii Volcano, with magma injection moving afterwards into the cone of Avacha Volcano (2010–2016). The geometry of the magma bodies reflects the NF geomechanical conditions (tension and normal faults, \(S_V>S_{H_{\text{max}}}>S_{h_{\text{min}}}\)) at the basement of Koryakskii Volcano dominated by vertical stresses S v , with the maximum horizontal stress \(S_{h_{\text{max}}}\) pointing north. A CFRAC simulation of magma injection into a fissure under conditions that are typical of those in the basement of Koryakskii Volcano (the angle of dip is 60°, the size is 2 × 2 km2, and the depth is –4 km abs.) showed that when the magma discharge is maintained at the level of 20000 kg/s during 24 hours the fissure separation increases to reach 0.3 m and the magma injection is accompanied by shear movements that occur at a rate as high as 2 × 10–3 m/s, thus corresponding to the conditions of local seismic events with Mw below 4.5. We are thus able to conclude that the use of planeoriented clusters of earthquakes for identification of magma emplacement events is a physically sound procedure. The August 2, 2011 seismicity increase in the area of the Izotovskii hot spring (7 km from the summit of Koryakskii Volcano), which is interpreted as the emplacement of a dike, has been confirmed by an increase in the spring temperature by 10–12°C during the period from October 2011 to July 2012.  相似文献   

8.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   

9.
The solubility of Au in silicate melts and fluids governs the enrichment and migration of Au during the formation of magmatic-hydrothermal Au deposits. Large Au deposits require vast amounts of Au to migrate from the upper mantle-lower crust to the shallow crust, and high Au solubility in magma and hydrothermal fluid facilitates the formation of Au-rich magma and fluid in the crust and mantle source and efficient transport. This paper reviews recent high-pressure and high-temperature experimental studies on Au species in magmas and hydrothermal fluids, the partitioning behavior of Au between silicate melts and fluids, and the effects of temperature, pressure, oxygen fugacity, sulfur fugacity, silicate melt composition, and volatiles(H_2O, CO_2, chlorine, and sulfur) on the solubility of Au in magma. We show that the solubility of Au in magma is largely controlled by the volatiles in the magma: the higher the content of reduced sulfur(S~(2-) and HS~-) in the magma, the higher the solubility of Au. Under high-temperature, high-pressure, H_2O-rich, and intermediate oxygen fugacity conditions, magma can dissolve more reduced sulfur species, thus enhancing the ability of the magma to transport Au. If the ore-forming elements of the Au deposits in the North China Craton originate from mantle-derived magmas and fluids, we can conclude, in terms of massive Au migration, that these deep Au-rich magmas might have been generated under H2 O-rich and moderately oxidized conditions(S~(2-) coexists with S~(6+)). The big mantle wedge beneath East Asia was metasomatized by melts and fluids from the dehydration of the Early Cretaceous paleo-Pacific stagnant slab, which not only caused thinning of the North China Craton, but also created physicochemical conditions favorable for massive Au migration.  相似文献   

10.
Physical analysis of explosive, magma-water interaction is complicated by several important controls: (1) the initial geometry and location of the contact between magma and water; (2) the process by which thermal energy is transferred from the magma to the water; (3) the degree to and manner by which the magma and water become intermingled prior to eruption; (4) the thermodynamic equation of state for mixtures of magma fragments and water; (5) the dynamic metastability of superheated water; and (6) the propagation of shock waves through the system. All of these controls can be analyzed while addressing aspects of tephra emplacement from the eruptive column by fallout, surge, and flow processes. An ideal thermodynamic treatment, in which the magma and external water are allowed to come to thermal equilibrium before explosive expansion, shows that the maximum system pressure and entropy are determined by the mass ratio of water and magma interacting. Explosive (thermodynamic) efficiency, measured by the ratio of maximum work potential to thermal energy of the magma, depends upon heat transfer from the pyroclasts to the vapor during the expansion stage. The adiabatic case, in which steam immediately separates from the tephra during ejection, produces lower efficiencies than does the isothermal case, in which heat is continually transferred from tephra to steam as it expands. Mechanisms by which thermal equilibrium between water and magma can be obtained require intimate mixing of the two. Interface instabilities of the Landau and Taylor type have been documented by experiments to cause fine-scale mixing prior to vapor explosion. In these cases, water is heated rapidly to a metastable state of superheat where vapor explosion occurs by spontaneous nucleation when a temperature limit is exceeded. Mixing may also be promoted by shock wave propagation. If the shock is of sufficient strength to break the magma into small pieces, thermal equilibrium and vapor production in its wake may drive the shock as a thermal detonation. Because these mechanisms of magma fragmentation allow calculation of grain size, vapor temperature and pressure, and pressure rise times, detailed emplacement models can be developed by critical field and laboratory analysis of the resulting tephra deposits. Deposits left by dense flows of tephra and wet steam as opposed to those left by dilute flows of dry steam and tephra show contrasts in median grain size, dispersal area, grain shape, grain surface chemistry, and bed form.  相似文献   

11.
A numerical model has been formulated that simulates the differentiation of mafic and ultramafic magmas by the fractionation of olivine and molten sulfide. The model is used to simulate the low-pressure differentiation of a komatiite magma series under both sulfide-undersaturated and sulfide-saturated conditions. Under sulfide-saturated conditions, the molecular ratio of olivine to sulfide removed from the silicate liquid is39 ± 2. Separation of this relatively small proportion of sulfide melt results in significantly different chemical trends in derivative liquids and fractionated material than are produced in the sulfide-undersaturated system, and this observation may be useful in mineral exploration. Comparison of the model results with published analyses of natural rocks indicate that the liquid equivalent members of the komatiite suite at Yakabindie, Western Australia, could be derivative liquids produced by fractional crystallization of olivine from a sulfide-undersaturated parental magma containing about 32 wt.% MgO. Derivation of a komatiitic pyroxenite with 20 wt.% MgO would require fractionation of 43.4 mol.% olivine whereas production of a komatiitic basalt with 12 wt.% MgO would involve removal of 58.5 mol.% olivine. Synvolcanic intrusive dunitic lenses at Yakabindie could have been produced by accumulation of material separated during about 3.8 mol.% fractionation of a similar parental magma, but the concentration of chalcophile elements in these bodies requires that the magma was sulfide-saturated.  相似文献   

12.
The predominant types of high-grade iron deposits in China include skarn, sedimentary metamorphic(banded ironformation, BIF-type), continental/submarine volcanic-hosted and magmatic Fe-Ti-Voxide deposits. Based on a comprehensive review of current studies on these deposits, this paper suggests that the oxygen concentration in atmosphere played an important role for the formation of BIFs, whereas the tectonic setting and deep magmatic differentiation processes are more important for the other types. Notably, both high temperature and high pressure experiments and melt inclusion studies indicate that during the differentiation, high temperature magmas could develop iron-rich magma via liquid immiscibility but not pure oxide melt("iron ore magma"). Fe-P melt could be generated directly by liquid immiscibility under hydrous and oxidized condition. The formation of high-grade iron deposits is mostly associated with the processes related to multiple stages of superimposition, e.g., desiliconization and iron enrichment, removal of impurity, and remobilization and re-precipitation of iron. According to the temporal evolution, the high-grade iron deposit could be divided into multi-episode superimposition type(temporally discontinuous mineralization) and multi-stage superimposition type(temporally continuous mineralization). The former is represented by the sedimentary metamorphic iron deposit, and the latter includes those related to magmatic-hydrothermal fluids(e.g., skarn,volcanic-hosted and magmatic types).  相似文献   

13.
The Monte Guardia rhyolitic eruption (~22 ka, Lipari, Aeolian Islands, Italy) produced a sequence of pyroclastic deposits followed by the emplacement of lava domes. The total volume of dense magma erupted was nearly 0.5 km3. The juvenile clasts in the pyroclastic deposits display a variety of magma mixing evidence (mafic magmatic enclaves, streaky pumices, mineral disequilibria and heterogeneous glass composition). Petrographic, mineralogical and geochemical investigations and melt inclusion studies were carried out on the juvenile clasts in order to reconstruct the mixing process and to assess the pre-eruptive chemico-physical magmatic conditions. The results suggest that the different mingling and mixing textures were generated during a single mixing event between a latitic and a rhyolitic end member. A denser, mixed magma was first erupted, followed by a larger volume of an unmixed, lighter rhyolitic one. This compositional sequence is the reverse of what would be expected from the tapping of a zoned magma chamber. The Monte Guardia rhyolitic magma, stored below 200 MPa, was volatile-rich and fluid-saturated, or very close to this, despite its relatively low explosivity. In contrast to previous interpretations, there exists the possibility that the rhyolite could rise and erupt without the trigger of a mafic input. The entire data collected are compatible with two possible mechanisms that would generate a reversely zoned sequence: (1) the occurrence of thermal instabilities in a density stratified, salic to mafic magma chamber and (2) the intrusion of rising rhyolite into a shallower mafic sill/dike.  相似文献   

14.
Cerro Pizarro is an isolated rhyolitic dome in the intermontane Serdán-Oriental basin, located in the eastern Trans-Mexican Volcanic Belt. Cerro Pizarro erupted ~1.1 km3 of magma at about 220 ka. Activity of Cerro Pizarro started with vent-clearing explosions at some depth; the resultant deposits contain clasts of local basement rocks, including Cretaceous limestone, ~0.46-Ma welded tuff, and basaltic lava. Subsequent explosive eruptions during earliest dome growth produced an alternating sequence of surge and fallout layers from an inferred small dome. As the dome grew both vertically and laterally, it developed an external glassy carapace due to rapid chilling. Instability of the dome during emplacement caused the partial gravitational collapse of its flanks producing various block-and-ash-flow deposits. After a brief period of repose, re-injection of magma caused formation of a cryptodome with pronounced deformation of the vitrophyric dome and the underlying units to orientations as steep as near vertical. This stage began apparently as a gas-poor eruption and no explosive phases accompanied the emplacement of the cryptodome. Soon after emplacement of the cryptodome, however, the western flank of the edifice catastrophically collapsed, causing a debris avalanche. A hiatus in eruptive activity was marked by erosion of the cone and emplacement of ignimbrite derived from a caldera to the north of Cerro Pizarro. The final growth of the dome growth produced its present shape; this growth was accompanied by multiple eruptions producing surge and fallout deposits that mantle the topography around Cerro Pizarro. The evolution of the Cerro Pizarro dome holds aspects in common with classic dome models and with larger stratovolcano systems. We suggest that models that predict a simple evolution for domes fail to account for possibilities in evolutionary paths. Specifically, the formation of a cryptodome in the early stages of dome formation may be far more common than generally recognized. Likewise, sector collapse of a dome, although apparently rare, is a potential hazard that must be recognized and for which planning must be done.Editorial responsibility: J. Gilbert  相似文献   

15.
16.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

17.
This study includes a compilation of about one hundred estimates of volumetric rates of magma emplacement and volcanic output that are average rates for durations of igneous activity greater than 300 yrs. These data indicate that the rate of volcanic output is about 10−1 km3 yr−1 in regions that are the most active magmatically. Factors that correlate with rates of magma emplacement and volcanic output are: magma composition, crustal thickness, tectonic setting, and regional stress. Of the ninety rates of magma emplacement and volcanic output that were studied, the highest for basaltic magmas are greater than the highest for silicic magmas, regardless of the volumes erupted or areal extent of magmatism. Rates of volcanic output for oceanic areas tend to be greater than rates in continental areas, perhaps because of thinner crust, a predominance of basaltic magma, and higher rates of magma generation. Ratios of intrusive to extrusive volumes are typically about 5 to 1 for oceanic localities and 10 to 1 for continental localities. This difference apparently reflects dissimilar rates of magma ascent related to different crustal thicknesses and magma compositions. The total rate of magma emplacement and volcanic output for the Earth, averaged over the last 180 m.y., is between about 26 and 34 km3 yr−1. About 75% of this total is contributed by ocean-ridge magmatism. Oceanic intraplate magmatism contributes about 5%. Igneous activity in subduction zones, about half of which is continental, adds about 20%. Intracontinental magmatism, more than 95% of which is flood and plains basalts, provides less than 5% of the total global rate of magma emplacement and volcanic output.  相似文献   

18.

Widely-distributed lamprophyres in the Laowangzhai gold deposit were associated closely with gold ores. Phlogopite40Ar/39Ar dating suggests that the emplacement age of lamprophyric magma ranges from (30.8±0.4) to (34.3±0.2) Ma, and gold mineralization took place at (26.4±0.2) Ma. PGE geochemical tracing indicates that gold in the gold deposit did not come from the primitive lamprophyric magma. The tempo-spatial paragenesis between lamprophyres and mesothermal gold deposits along the Jinsha-Red River belt may be attributed to the fact that they formed in the same tectonic setting.

  相似文献   

19.
浙闽裂谷带为金银铅锌铜钼金属矿床及萤石、高岭土等非金属矿床的重要成矿域,其代表性矿床有治岭头金银矿床、梅仙式块状硫化物多金属矿床、银坑斑岩型钼矿床、湖山萤石矿田、武义萤石矿田等。裂谷带活动具两个旋回,第一旋回与超大陆解体相当,始于新元古代,闭合于加里东期,代表性地层标志为中元古代地层。第二旋回始于燕山早期,止于燕山晚期,代表性地层标志为下侏罗统枫坪组地层及白垩纪断陷盆地沉积地层。第一旋回相对应区域变质、混合岩化、韧性剪切活动及岩浆岩侵位等地质作用。第二旋回相对应大规模火山喷发、岩浆侵位、断陷盆地等地质作用。第一旋回裂谷环境中,形成治岭头式金银矿和梅仙式铅锌多金属矿床的初胚或金属矿床的初始矿体;在第二旋回后期大规模火山热液的成矿作用中,使前者叠加富集,形成了巨大资源量的工业矿体,而岩体侵位形成了一系列斑岩铜矿和浙闽地区极富特色非金属矿、萤石矿成矿带。  相似文献   

20.
Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects of the eruption, however, such as the explosive reactivation of the system and explosive dome destruction, are more complex. These events are commonly associated with polygenetic structures, such as stratovolcanoes or calderas, in which multiple pulses of magma initiate reactivation. A comparison of major and trace element geochemistry with nearby Pleistocene silicic centers does not show indication of any co-genetic relationship, suggesting that Cerro Pinto was produced by a small, isolated magma chamber. The compositional variation of the erupted material at Cerro Pinto is minimal, suggesting that there were not multiple pulses of magma responsible for the complex behavior of the volcano and that the volcanic system was formed in a short time period. The variety of eruptive style observed at Cerro Pinto reflects the influence of quickly exhaustible water sources on a short-lived eruption. The rising magma encountered small amounts of groundwater that initiated eruption phases. Once a critical magma:water ratio was exceeded, the eruptions became dry and sub-plinian to plinian. The primary characteristic of Cerro Pinto is the predominance of fall deposits, suggesting that the level at which rising magma encountered water was deep enough to allow substantial fragmentation after the water source was exhausted. Isolated rhyolite domes are rare and are not currently viewed as prominent volcanic hazards, but the evolution of Cerro Pinto demonstrates that individual domes may have complex cycles, and such complexity must be taken into account when making hazard risk assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号