首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and accurate method to determine fluorine and chlorine contents in small amounts (∼ 30 mg) in rock has been developed using ion chromatography after extraction by alkaline fusion. Powdered sample was mixed with sodium carbonate and zinc oxide at a mass ratio of 1:3:1, and was fused in an electric furnace at 900 °C for 30-40 minutes. An aqueous solution obtained by dissolving the fused silicate rock was diluted to the appropriate concentration of sodium carbonate (< ∼ 24 mmol l-1) to minimise the tailing effect on F- during ion chromatography caused by the large amount of carbonate species originating from the flux. Fluorine and chlorine contents were then determined by a standard additions method. Based on the relative standard deviation of the backgrounds, detection limits of both fluorine and chlorine were ∼ 4 μg g-1, when 30 mg test portions were fused and diluted by a factor of 1200. We also report new fluorine and chlorine contents in nine GSJ (Geological Survey of Japan) reference materials, including peridotite (JP-1), granite (JG-1a), basalts (JB-1b, 2 and 3), andesites (JA-1 and 2) and rhyolites (JR-1 and 2). Fluorine and chlorine contents in the reference materials in this study were consistent with previously reported values. Reproducibilities were < 10 % for samples with F and Cl concentrations of > 20 μg g-1 and < 20 % with F and Cl < 20 μg g-1.  相似文献   

2.
A method for the selective separation of Ag, Cd, Cr, Cu, Ni, Pb and Zn in traces from solutions of calcite (CaCO3), dolomite (CaMg(CO3)2) and gypsum (CaSO4.2H2O) before their determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES) is presented. The expected interferences of Ca and Mg on intensities of trace analytes were removed by collecting the elements of interest with cobalt(III) hexamethylenedithiocar-bamate, Co(HMDTC)3. The flotation of aqueous solutions (1 l) of calcite, dolomite and gypsum was performed at pH 6.0, by 1.5 mg l−1 Co and 0.6 mmol l−1 HMDTC. To minimise the effect of the reaction between Ca/Mg, which restrains the function of the surfactant, careful selection of the most suitable foaming reagent was necessary. The accuracy of the method was established by analysing natural alkaline-earth minerals by the standard addition method as well as using the dolomite reference materials GBW 07114 and GSJ JDo-1. The ICP-AES limits of detection following flotation on different minerals were found to be 0.080 μg g−1 for Cd, 0.105 μg g−1 for Ag, 0.142 μg g−1 for Cu, 0.195 μg g−1 for Cr, 0.212 μg g−1 for Ni, 0.235 μg g−1 for Zn and 0.450 μg g−1 for Pb.  相似文献   

3.
Differential thermal analysis, pH determination and ion chromatography were used to investigate the interference of chlorine in the determination of combined water (H2O+) by the Penfield tube gravimetric method. The magnitude of the chlorine interference was quantified and a correction method was proposed to obtain accurate results for H2O+. The method was applied to the determination of H2O+ in deep sea sediments containing chlorine and certified reference materials of oceanic polymetallic nodules.  相似文献   

4.
Inductively coupled plasma-atomic emission spectrometry in conjunction with an ultrasonic nebulizer was employed for the determination of Sr and Ba in river waters at parts per billion (μg l−1) levels without pre-concentration. The ultrasonic nebulizer, equipped with a desolvation system, enhanced the analytical sensitivity by ten to twenty fold compared to conventional pneumatic nebulizers. The detection limits for Sr and Ba, ascertained from blanks and reference samples made in 0.05% NaCl solution, were 0.045 μg l−1 and 0.16 μg l−1 respectively. The accuracy of measurements, based on analyses of solutions of reference materials (G-2 and W-1) and multielement commercial standards (Merck®), was ± 10%. Replicate analyses of samples and reference samples showed measurement precision to be to be better than ± 5%, which is adequate considering that the concentration of Sr and Ba in river waters varies by one to two orders of magnitude.  相似文献   

5.
Concentrations of halogens (fluorine, chlorine, bromine and iodine) were determined in six geochemical reference materials (BHVO‐2, GS‐N, JG‐1, JR‐1, JB‐1b, JB‐2). Halogens were first extracted from powdered samples using a pyrohydrolysis technique, then hydrolysis solutions were analysed by ion chromatography for F and Cl and inductively coupled plasma‐mass spectrometry for Br and I. The detection limits in solutions were 100 μg l?1 for both F and Cl and 10 ng l?1 for Br and I. Considering the extraction procedure, performed on a maximum of 500 mg of sample and producing 100 ml of pyrohydrolysis solution, detection limits in rock samples were 20 mg kg?1 for F and Cl and 2 μg kg?1 for Br and I. The mean analytical errors on the studied composition ranges were estimated at 10 mg kg?1 for F and Cl, 100 μg kg?1 for Br and 25 μg kg?1 for I. The concentration values, based on repeated (generally > 10) sample analysis, were in good agreement generally with published values and narrowed the mean dispersion around mean values. Large dispersions are discussed in terms of samples heterogeneity and contaminations during sample preparation. Basaltic RMs were found to be more suitable for studies of halogen compositions than differentiated rock material, especially granites – the powders of which were heterogeneous in halogens at the 500 mg level.  相似文献   

6.
Methods based on high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) for iodine speciation analysis are described. Experiments were performed relating to iodine species, preservative medium and time. The concentration and pH of the buffer are also discussed in relation to separation efficiency. The developed methods allowed the fast and sensitive determination of iodine species with detection limits of 0.025 μg l−1 (as 1) for both iodide and iodate with < 5% relative standard deviation (RSD) for 50 nmol l−1. Attempts were made to quantify total organo-iodine by size-exclusion chromatography (SEC). By way of example, a number of groundwater samples were analysed by these methods, revealing that iodide is the main iodine species in the sampled waters, but that high concentrations of organo-iodine compounds were observed in some samples as well. In summary, the total concentration and the dominant species of iodine in aquatic freshwater environments is easily and accurately measured using this new method.  相似文献   

7.
An iminodiacetate chelating resin was optimised for the rapid determination of Co, Cu, Fe, Mn and Ni in seawater. Using inexpensive, high-capacity, reusable cartridges allowed high flow rates of up to 25 ml min−1. High preconcentration factors, of up to 500, were obtained in order to analyse samples using an ICP-OES. The requirement for a buffer was eliminated due to the high tolerance of the ICP-OES to interfering matrix elements, thereby further reducing the potential for contamination. Quantification limits in seawater were: Co = 6 ng l−1, Cu = 8 ng l−1, Fe = 6 ng l−1, Mn = 5 ng l−1 and Ni = 6 ng l−1. The method was verified by the analysis of near shore seawater (CASS-4) and open ocean seawater (NASS-5) reference materials. In order to satisfy the high sampling demands using the iminodiacetate cartridges, a portable off-line preconcentration unit was developed for routine analysis. The multi-channel preconcentration unit, was capable of treating up to eight samples simultaneously with concentrating times as little as 30 minutes. The technique was also used to determine dissolved metals in fresh and interstitial waters. The technique has been successfully used in a number of environmental studies and impact assessments to evaluate the effects of mining on the New Caledonian lagoon.  相似文献   

8.
A single-column suppressed ion chromatography technique was employed for the simultaneous determination of major and trace anions in sulfaterich groundwater samples. An analytical column, a self regenerating suppressor and sodium carbonate as the eluent were used to separate the anions. Method detection limits for the anions of interest were 10.4, 15.9, 36.8, 62, 60, 61 and 67 μg l−1 for F, Cl, NO2, Br, NO3, PO43− and SO42− respectively. The precision of the method was tested at five different concentration levels for each anion reference sample to evaluate the effectiveness of the method for groundwater analysis. Recovery studies were performed between two successive months by adding reference samples to the geothermal groundwater and drinking water samples. Precision was also assessed as the relative standard deviation of both repeatability (within-day) and reproducibility (between-day and different concentrations) for groundwater samples. Standard deviation and RSD values of 220 groundwater samples acquired over 8 months were evaluated. The suppressed ion chromatography technique was found to be a suitable method for determining major anions in sulfate-rich geothermal water samples.  相似文献   

9.
The CRPG (Nancy, France) has prepared secondary reference materials for Li isotope measurements by mixing 7Li or 6Li spikes and either L-SVEC or IRMM-016 certified reference materials to produce solutions having a known Li concentration and isotopic composition. The Li7-N and Li6-N solution samples (1.5 mol l−1 HNO3) have nominal δ7Li isotopic compositions of 30.1‰ and -9.7‰ respectively relative to L-SVEC and concentrations of 100 mg l−1. Repeated measurement of these samples using the QUAD-ICP-MS at the CRPG yielded δ7Li of 30.4 ± 1.1‰ (n = 13) and -8.9 ± 0.9‰ (n = 9) at the 2s level of confidence. An additional LiCl-N solution was measured and yielded a delta value of 9.5 ± 0.6‰ (n = 3). Identical results were obtained at the BRGM (Orléans, France) from determinations performed with a Neptune MC-ICP-MS (30.2 ± 0.3‰, n = 89 for the Li7-N, -8.0 ± 0.3‰, n = 38 for the Li6-N and 10.1 ± 0.2‰, n = 46 for LiCl-N at the 2s level of confidence). The deviation of measured composition relative to the nominal value for the Li6-N solution might be explained by either contamination during preparation or an error during sample weighing. These secondary reference materials, previously passed through ion exchange resin or directly analysed, may be used for checking the accuracy of Li isotopic measurements over a range of almost 40‰ and will be available to the scientific community upon request to J. Carignan or N. Vigier, CRPG.  相似文献   

10.
A new method has been developed for the determination of platinum and palladium based on separation and preconcentration with a microcolumn packed with nanometric TiO2 immobilised on silica gel (immobilised nanometric TiO2) prior to their determination by inductively coupled plasma-atomic emission spectrometry. The optimum experimental parameters for the preconcentration of Pt and Pd, such as the pH of the sample solution, its flow rate and volume, the type and concentration of eluent and interfering ions, have been investigated. Platinum and Pd could be quantitatively retained by immobilised nanometric TiO2 in the pH range 6–8, then eluted completely with 2.0 ml of 3% m/v thiourea in 1.0 mol l−1 HNO3. The detection limits of this method for Pt and Pd were 12 and 7. 6 ng l−1 with an enrichment factor of 100, and the relative standard deviations were 4.7% and 3.3% at the 10 ng ml−1 level. The method has been applied for the determination of Pt and Pd in geological samples with satisfactory results.  相似文献   

11.
Six low abundance rock reference materials (basalt BIR-1, dunite DTS-1, dolerite DNC-1, peridotite PCC-1, serpentine UB-N and basalt TAFAHI) have been analysed for high field strength elements (Zr, Nb, Hf, Ta, Th and U), Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g−1 levels (in rock) by magnetic sector inductively coupled plasma-mass spectrometry after HF/HClO4 high pressure decomposition. The adopted method uses only indium as an internal standard. Detection limits were found to be in the range of 0.08 to 16.2 pg ml−1 in solution (equivalent to 0.08 to 16.2 ng g−1 in rock). Our data for high field strength elements, Rb, Sr, Mo, Sb, Cs, Tl and Bi for the six selected low abundance geological reference materials show general agreement with previously published data. Our Ta values in DTS-1 and PCC-1 (1.3 and 0.5 ng g−1) are lower than in previously published studies, providing smooth primitive mantle distribution patterns. Lower values were also found for Tl in BIR-1, DTS-1 and PCC-1 (2, 0.4 and 0.8 ng g−1). Compared with quadrupole ICP-MS studies, the proposed magnetic sector ICP-MS method can generally provide better detection limits, so that the measurement of high field strength elements, Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g−1 levels can be achieved without pre-concentration, ion exchange separation or other specialised techniques.  相似文献   

12.
A method for the determination of Ge, As, Se and Te in silicate samples using isotope dilution-internal standardisation (ID-IS) octopole reaction cell (ORC) ICP-QMS by normal sample nebulisation was developed. The method does not involve either hydride generation or ion exchange. Germanium, Se and Te were determined by isotope dilution (ID), and As was determined by ID-IS. A silicate sample with an added Ge-Se-Te spike was digested with an HF-HNO3-HBr mixture, dried, re-dissolved with HF and the supernatant liquid was directly aspirated into an ORC-ICP-QMS instrument with He or H2 gas. No matrix effects were observed down to a dilution factor (DF) of ∼ 70 for Ge, Se and Te and DF of ∼ 1000 for As, which resulted in 3s detection limits in silicates of 2, 1, 0.1 and 4 ng g−1, respectively. Advantages of the method are the simple sample introduction as well as a capability of determining S, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by ID-IS-ICP-QMS/SFMS from the same solution. Furthermore, the total sample solution consumption was only 0.253 ml with DF = 2000. Therefore, only a 0.13 mg test portion was required. To demonstrate the applicability of this technique, Ge, As, Se and Te in eight silicate reference materials were determined, as well as S, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta in four carbonaceous chondrites.  相似文献   

13.
A procedure for the determination of chlorine by the isotope dilution technique (ID) using negative thermal ionisation mass spectrometry (N-TIMS) is described. Silicate samples of about 10 mg were spiked and decomposed with hydrofluoric acid, and chlorine was isolated by precipitation of silver chloride after neutralisation with Ca(OH)2. The ammonical solution of AgCl was then subjected to N-TIMS. Replicate analyses of rock reference materials, typically of JB-1 and JR-1, demonstrated the high quality of the analyses (precision for Cl was ± 1-2%). We present here the most precise data sets of chlorine concentrations in nine igneous rock reference materials, three basalts (JB-1, JB-2, JB-3), two andesites (JA-3, AGV-1), two rhyolites (JR-1, JR-2) and two granodiorites (JG-3, GSP-1). The chlorine concentrations found ranged from 152 μg g-1 in AGV-1 to 1008 μg g-1 in JR-1. Our results presented here are partly (but not completely) in agreement with recommended values, where they are available. The N-TIMS ID technique can thus be used as a means of determining low chlorine contents in silicate materials to high precision.  相似文献   

14.
We have measured 87Sr/86Sr and 143 Nd/144 Nd isotope ratios in different batches and aliquots of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1 and GSP-1 by thermal ionisation mass spectrometry. In addition, we also analysed the eight Max-Planck-Institut-Dingwell (MPI-DING) reference glasses. Nearly all isotope ratios obtained in the different aliquots and batches agree within uncertainty limits indicating excellent homogeneity of the USGS powders and the MPI-DING glasses. With the exception of GSP-2, the new USGS RMs are also indistinguishable from the ratios found in the original USGS RMs (87Sr/86Sr: 0.704960, 0.704958 (BCR-1, -2), 0.703436, 0.703435 (BHVO-1, -2), 0.703931, 0.703931 (AGV-1, -2); 143 Nd/144 Nd: 0.512629, 0.512633 (BCR-1, -2), 0.512957, 0.512957 (BHVO-1, -2); 0.512758, 0.512755 (AGV-1, -2)). This means that for normalisation purposes in Sr and Nd isotope geochemistry BCR-2, BHVO-2 and AGV-2 can well replace BCR-1, BHVO-1 and AGV-1 respectively.  相似文献   

15.
The selenium content of fifty two geochemical reference samples, issued by several reference material producers (ANRT, GIT-IWG, USGS, NIST and GSJ) has been determined by continuous hydride generation and atomic absorption spectrometry. Selenium(VI) in the digested solutions was pre-reduced to selenium(IV) by heating in 6 mol l−1 HCl solution. The limit of detection was 3 ng g−1 selenium in common geological samples. Some samples which contain a large amount of heavy metals were analysed by the standard addition technique. The agreement between the reported results and published data is satisfactory.  相似文献   

16.
The concentrations of bromine and iodine in USGS reference material MAG-1 were determined by standard addition with secondary-source x-ray fluorescence spectrometric detection. Three determinations of bromine in the same sample yielded 311, 309 and 346 μg Br/g solid. The iodine content was found to be 380 μg I/g solid. The determination of bromine in a second bottle of MAG-1 (266 ± 9 μg Br/g) indicated that a large variation in halogen concentration may exist between samples of this reference material.  相似文献   

17.
A simple sample treatment method for the accurate and precise determination of iodine in soil, sediment and biological samples by inductively coupled plasma-mass spectrometry (ICP-MS) is described. Iodine in samples was extracted in screw top PTFE-lined stainless steel bombs using a 10% v/v ammonia solution at 185 C for 18 hours (overnight), after which the extract was introduced into the ICP-MS for direct measurement. 126Te was employed as the internal standard to compensate for matrix effects and instrument drift. The limit of detection (LOD, three times the standard deviation of the procedural blank solution, expressed as the concentration in the sample solution) was 0.003 ng ml--1. The limit of quantitation (LOQ, ten times the standard deviation of the procedural blank solution, expressed as the concentration in the solid samples, dilution factor DF = 100) was 0.01 μg g--1 (dry mass). The accuracy and precision of the method were demonstrated by analysing different Chinese geological certified reference materials (soils, stream sediments and a hair sample). The measured concentrations were in a good agreement with the certified values indicating that bias in the method was not significant. The precision (n = 10) for different concentrations ranged from 1.82% to 4.32% RSD. Comparison of the ammonia extraction procedure with a "sintering" method indicated that there was no significant difference in results obtained with the two methods for geological soil and stream sediment samples. However, for biological samples, such as hair, kelp, tea etc., the results obtained by the sintering method were far below those of the ammonia extraction method. The ammonia extraction has advantages, as it is simpler than the "sintering" method, and has a lower procedural blank, better detection limits and reproducibility. Due to the simplicity of the method, a high rate of sample throughput is possible.  相似文献   

18.
电感耦合等离子体质谱法同时测定地下水中硼溴碘   总被引:6,自引:4,他引:2  
建立了电感耦合等离子体质谱法同时测定地下水中B、Br、I的方法。选定φ=2%(体积分数)的稀NH3.H2O介质消除碘的记忆效应。采用干扰较少的10B和79Br同位素。B、Br、I在0~10 000 ng/mL呈良好的线性关系。方法的检出限为10B 0.176 ng/mL,79Br 0.876ng/mL,127I 0.132 ng/mL;精密度(RSD,n=12)为10B 2.86%,79Br 3.36%,127I 2.69%;10B的阶梯加标回收率为94.6%~101.5%,79Br为98.3%~104.9%,127I为96.5%~102.0%。  相似文献   

19.
Some recent experiments on the determination of Au and the platinum-group elements (PGE) in geochemical samples are reviewed. Emphasis is given to the determination of ultra-low levels of PGE concentrations in resistant matrices, including chromites, molybdenites and ultrabasic ores. The problems and features of PGE determination in samples of various chemical composition are considered. For each sample type studied, a series of sample preparation techniques are proposed. These techniques included acid digestion, fusion with sodium peroxide, cold sintering with an oxidizing mixture of Na2O2+ Na2CO3 and also oxidizing fluorination with bromine trifluoride. A new approach for preparing geochemical material prior to digestion, based on mechano-chemical activation with simultaneous hyperfine grinding, is proposed and studied. The instrumental determination of PGE contents was carried out directly by AAS from extracted organic phases. It was found that a combination of digestion processes was required to achieve geochemical background levels of Au and PGE concentrations with the following detection limits: Pd, Rh - 1 ng g−1, Pt, Ru - 10 ng g−1, Au - 0.2 ng g−1, Ag - 0.1 ng g−1. The uncertainty in PGE and Au determination in geochemical samples is dependent on metal concentration, and also on their distribution in samples. The total analytical uncertainty of the proposed method is between 15-30%.  相似文献   

20.
We determined chlorine contents in nine GSJ (Geological Survey of Japan) reference materials (JB-1, 1a, 2, 3; JA-1, 2, 3; JR-1, 2) by prompt gamma neutron activation analysis, employing the standard addition method. Pressed powder disks of each reference material were used for neutron irradiation and gammaray measurement, after known quantities (25-200 μl) of sodium chloride solution were added. The influence of the nearby sodium peak overlap was checked, and fluctuations in the chlorine count rate were corrected using silicon as an internal standard. The slopes of calibration lines for seven reference materials (JB-1, 2, 3; JA-1, 2, 3; JR-2) and SiO2 powders fall within 5% error, and their chlorine values were obtained from the intercepts. Chlorine contents in JB-1 a and JR-1 were also determined by using the calibration lines. Our chlorine values ranged from 26.1 to 934 μg g-1, which agrees well with the previously reported values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号