首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Northern Radar's Cape Race Ground Wave Radar (GWR) system became operational in the fall of 1990. The radar facility has the potential to provide surveillance of over 160000 square kilometres of the Grand Banks off Newfoundland, from a coastal station. GWR is a multipurpose sensor capable of detecting ships, monitoring icebergs and sea-ice, and measuring surface currents and sea state. The radar system employs a frequency modulated interrupted continuous wave (FMICW) as the transmit waveform. This waveform uses a pulse compression technique that combines good range resolution and high maximum range with a relatively high duty cycle. In this paper, we describe the implementation of the FMICW waveform in a practical real time radar system. We also show some examples of vessel, iceberg, acid aircraft detection and tracking using the Cape Race facility. These examples demonstrate that the Cape Race GWR may be used as an effective tool to assist in the management, surveillance, and enforcement of Canadian interests in the Exclusive Economic Zone  相似文献   

2.
In modern active sonars, so-called “high-gain” waveforms are used to obtain processing gain for improved detection performance in reverberation. In time and frequency spread channels, the full processing gain of these waveforms is not achievable and robust detectors are needed. It is common practice to use a segmented replica correlator (SRC) detector for robust detection in such environments. In this paper, we show that an alternative processor formed by integrating the full replica correlator output magnitude squared, denoted RCI for replica correlator integrator, has advantages over the SRC when the waveform is linear frequency modulated (LFM). The RCI is better suited to the case of unknown time spreading through the use of a bank of integrators tuned for a wide range of spreading widths. The SRC, on the other hand, may be designed only for a fixed amount of distortion. Computer simulations are used to show how a multihypothesis RCI processor improves upon the fixed SRC by up to 4 dB over a realistic range of time spreading widths  相似文献   

3.
Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform.  相似文献   

4.
5.
Retracking altimeter waveforms over inland water bodies is a challenging task as a wide range of waveform is encountered while the retracking algorithms are available only for a handful of echo shapes. One such waveform shape widely encountered in lakes and reservoirs is the multipeak echo. These echoes are produced when the interacting surface in the altimeter footprint is not homogeneous and a number of different types of surfaces contribute to the resulting waveform. The widely used conventional retrackers, namely the Brown, Beta-5, Ice-2, OCOG, and threshold, can retrack a number of different waveform shapes such as the Brown like waveforms, specular waveforms, and rectangular waveforms but may not perform well for multipeak waveforms. In this article, a technique has been demonstrated to identify the different subwaveforms within a multipeak waveform and identify the subwaveform corresponding to the target at nadir. The subwaveform that is reflected from the nadir surface is identified from apriory information about the surface topography of the area. The subwaveform is then retracked using the 50% threshold to find the correct retracked range and water height. This technique has been tested for nine cycles of SARAL SIGDR data on Ukai reservoir, Gujarat, India, and found to perform much better than the other retrackers, particularly for multipeak waveforms.  相似文献   

6.
A design procedure for an amplitude-modulated and nonlinear frequency-modulated (AM-NLFM) signal is introduced. The designed signal can drive a given transducer to its peak power to produce a sound pressure waveform into the water with a desired power spectrum and maximum possible energy. The signal can be formed either in the time domain or in the frequency domain. The frequency domain approach gives an output power spectrum precisely identical to a preferred shape. Therefore, the sidelobe levels after matched filtering are not raised by unwanted spectral magnitude ripples which exist when a time domain method is adopted. The absence of spectral ripples is desirable for applications requiring long range transmission and good multipath discrimination capability. An acceptable tradeoff between time resolution and sidelobe levels is achieved by properly choosing the desired power spectral shape. As the time resolution is usually the most critical specification for precision travel-time measurements, it is shown that by sacrificing some of the transducer's output power capability, a waveform with a considerably wider bandwidth can be transmitted, resulting in a significantly enhanced time resolution. A quasi-steady-state (QSS) approximation is used in the signal design, leading to a manageable and intuitive design procedure  相似文献   

7.
The problem of beam formation from a towed line array whose shape has been distorted is considered. Emphasis is placed on the beam broadening and range estimation effects of array shape perturbations and how the resulting losses can be regained if the actual element positions are known. Specific illustrations are provided for various levels of shape distortion. For example, a 15-m bow in a 232.5-m-long array broadens the beamwidth by a factor of 3 at 50 Hz. As another example, a 6-m bow in an 800-m-long array leads to a 20-pereent range underestimation at 10 km for a 100-500-Hz broadband source.  相似文献   

8.
Based on an approximation to the Cramer-Rao lower bound, it is demonstrated that meaningful resolution with an unbiased narrowband estimator requires a source separation of at least about 1/10 of a Rayleigh beamwidth, even under ideal circumstances, with 1/4 beamwidth being a more practically achievable figure  相似文献   

9.
This paper describes adaptive pulselength correction (APLECORR), an environmentally adaptive technique for optimizing the detection performance in wide-band active sonars in so-called doubly spread channels. It works by allocating available transmit energy to frequency bands according to the in situ measured reverberation and ambient noise spectra. It optimizes the waveform and the detection processor at the same time. It is appealing in its simplicity and achieves significant gains whenever the reverberation-to-noise ratio is not constant across frequency, thus its applicability to wide-band systems. The method extends easily to PRN and other non-FM waveforms. The paper includes a proof that time spreading and frequency-spreading distortion have an approximately equivalent effect if the waveform is linear or hyperbolic frequency modulation  相似文献   

10.
In most design applications such as alignment of the berthing structure and breakwater alignment, it becomes necessary to determine the direction of design wave. There are two different approaches to determine wave direction. One involves the use of first order Fourier coefficients (mean wave direction) while the other uses second order Fourier coefficients (principal wave direction). Both the average wave direction over the entire frequency range (0.03–0.58 Hz) and the direction corresponding to the peak frequency are used in practice. In the present study, comparison is made on wave directions estimated based on first and second order Fourier coefficients using data collected at four locations in the west and east coasts of India. Study shows that at all locations, the mean and principal wave directions for frequencies ranging from 0.07 to 0.25 Hz (±0.5 times peak frequency) co-vary with a correlation coefficient of 0.99 but at lower and higher frequencies, difference between the parameters is large. Average difference between the mean wave direction at peak frequency and the average over the frequency related to spectral energy more than 20% of maximum value is less, around 13°. Study shows that average difference in the sea and swell directions is around 39°.  相似文献   

11.
In this study, a waveform retracking algorithm based on finding the inflection-point of the waveform is proposed. After two-steps pre-processing procedure, we employ this method for 145 cycles of Jason-2 data for two tracks 81 and 16 over the Strait of Hormuz. Moreover, we obtain the corrected SSH by the common empirical methods namely Offset Centre of Gravity, Beta and Threshold as well as the ALES. We compare the SSH time series from proposed algorithm with those from common empirical methods. Results are validated against three nearby tide-gauges in the case study. The correlation coefficient and RMSE between the corrected SSH and tide-gages data were computed for three distance classes from the coastline: 0~5, 5~10 and 10~15 kilometer. Our method improves the averaged RMSE of raw SSH up to 41%, 41% and 24%, for these classes over track 81 and 51%, 38% and 41% over track 16, respectively. The averaged correlation values of the proposed method indicate 33%, 11% and 2% improvement over track 81 and are 29%, 14% and 3% over track 16 for three distance groups, respectively. Our method leads to slightly better results than the successful ALES method, especially within the range of 0~5 km.  相似文献   

12.
李焜  方世良 《海洋工程》2015,29(1):105-120
The conventional matched field processing (MFP) uses large vertical arrays to locate an underwater acoustic target. However, the use of large vertical arrays increases equipment and computational cost, and causes some problems such as element failures, and array tilting to degrade the localization performance. In this paper, the matched field localization method using two-hydrophone is proposed for underwater acoustic pulse signals with an unknown emitted signal waveform. Using the received signal of hydrophones and the ocean channel pulse response which can be calculated from an acoustic propagation model, the spectral matrix of the emitted signal for different source locations can be estimated by employing the method of frequency domain least squares. The resulting spectral matrix of the emitted signal for every grid region is then multiplied by the ocean channel frequency response matrix to generate the spectral matrix of replica signal. Finally, the matched field localization using two-hydrophone for underwater acoustic pulse signals of an unknown emitted signal waveform can be estimated by comparing the difference between the spectral matrixes of the received signal and the replica signal. The simulated results from a shallow water environment for broadband signals demonstrate the significant localization performance of the proposed method. In addition, the localization accuracy in five different cases are analyzed by the simulation trial, and the results show that the proposed method has a sharp peak and low sidelobes, overcoming the problem of high sidelobes in the conventional MFP due to lack of the number of elements.  相似文献   

13.
波形分解是机载测深LiDAR数据处理的关键环节,为水深计算、底质类型反演和水体浑浊度分析等提供基础信息。针对传统测深LiDAR波形分解算法受噪声干扰严重、对微弱及叠加信号分解不准确的问题,提出一种新的波形分解算法。对原始波形经小波滤波后,计算滤波前后尾段波形的差异,估计回波信号的噪声;利用高斯模型,从原始波形数据中不断分解出经LM算法优化参数后的波形分量,直到剩余波形中最大峰值与优化后的参数小于一定阈值。通过南海实测数据进行验证,实验结果表明:该算法分解弱回波能力强,不论在浅水(回波发生叠加)还是深水,其分解精度均优于传统算法。  相似文献   

14.
A basic formalism is developed to treat the vertical spatial coherence of backscatter from wind-generated microbubbles beneath the ocean surface. This formalism treats signals multiply scattered by the sea surface and the subsurface scatterers, as well as absorption in the bubble layer. Approximate solutions are obtained for the case of narrow beamwidth sources and are applied to study the influence of measurement system and environmental parameters on coherence. Using bubble densities derived from acoustic backscatter data, the coherence is found to depend strongly on source frequency and beam pattern. The primary environmental effect is due to the increase in both bubble density and penetration depth below the surface that occurs with increasing windspeed. At high wind speeds, the vertical coherence is sufficiently dependent on the scatterer depth distribution to provide a viable means of studying this phenomenon.  相似文献   

15.
In this paper an explicit pseudo-linear estimator for Doppler-bearing tracking is proposed. It overcomes the problems with the bias of earlier pseudo-linear estimators and with the nonlinear frequency measurement equation by using another representation than the Cartesian one and by using the logarithm of the frequency, respectively. It is fast, inherently stable, and easy to implement. The Doppler shift is, for a nonmoving own-ship, determined by the target velocities, while the bearing rate is determined by the same velocities divided by the range. The special representation in this paper uses this difference in behavior to give fast and bias free estimation of the range. Instead of iterating a weighted feast squares problem using bearing and frequency measurements simultaneously, the true bearings and the course are estimated in a bearings only step followed by a frequency only step, which estimates range and frequency. The range estimate then gives the speed estimate. Modifications for scenarios with multiple emitted frequency lines and/or for frequency lines that disappear during parts of a scenario are shown  相似文献   

16.
Vertical resolution is of fundamental importance in sonar exploration and is directly related to the duration of the acoustic pulse generated by the transducer. The shorter the radiated pulse, the higher the vertical resolution. Many sub-bottom profiling sonar systems use piezoelectric transducers because they are reversible and well understood. Piezoelectric projectors are normally resonant transducers, which are intrinsically narrowband. A piezoelectric transducer is usually driven by a tone-burst. However, it is possible to use Fourier techniques to find a pre-compensated electrical driving function so that the transducer radiates a prescribed wider band acoustic waveform. This technique can be applied to synthesize zero-phase cosine-magnitude, Gaussian, and bionic pulses, with a conventional sandwich transducer. Zero-phase cosine-magnitude waveforms provide minimum length pulses (and therefore maximum resolution) within a prescribed frequency band.The aim of this paper is to illustrate the synthesis of wideband acoustic pulses using an underwater piezoelectric projector. The conventional acoustic waveform radiated when a Tonpiltz transducer is transiently excited using a “click” and allows its frequency response function to be measured. This function is used to design the electrical signal which then drives the transducer so that it radiates the shortest pulse compatible with its mechanical response. The significant resolution enhancement of the waveform shaping process is illustrated by its application to a sediment wedge model.  相似文献   

17.
Computer simulations are carried out to study the feasibility of an adaptive equalizer applied to an hydroacoustic data-transmission channel. The channel is examined with a comprehensive acoustical model to acquire worst-case examples of the ocean acoustic transmission channel. The equalizer performance is investigated by simulations with a computer-generated channel response. Equalizer behavior in a mobile time-variant environment is also studied by use of a simplified, time-discrete multipath channel model. A stochastic gradient lattice equalizer is simulated for a channel which varies due to movement of the transmitter platform. The equalizer was able to track a velocity of up to 0.4 m/s for a favorable transmission geometry, using a transmitter beamwidth of 10°. The results demonstrate the feasibility of coherent modulation schemes for medium-distance ocean acoustic telemetry. It was found that small beamwidths are imperative in maintaining signal coherence and in facilitating adaptive equalization. In particular, narrow-beam transducers will reduce equalizer complexity as well as the frequency spread  相似文献   

18.
关定华 《海洋学报》1979,1(1):52-57
海底对浅海声传播的影响很大。海底有复杂的多层结构。在计算声场时如果把多层海底的影响都考虑进去,就会使计算复杂化,得不出一个清晰的物理图象。因此,在计算中往往使用海底反射损失系数来代替多层海底的模型。但海底反射损失与角度有复杂的依赖关系。为了计算方便,提出过不少简化模型。已经使用的模型有反射损失与角度无关、与角度一次方成正比;后来又提出反射损失在某一临界角之下与角度一次方成正比,在临界角之上与角度无关的三参数模型,克服了远场与近场衔接的问题[1,2]。但这些模型不一定在所有情况下都能反映海底反射损失与角度的关系的主要特征。本文提出一个近似方法,可以计算海底反射损失按任意规律随角度单调上升的情况下的声场。  相似文献   

19.
多功能超声成像测井仪采用超声脉冲反射法进行套损及水泥胶结质量评价.对该仪器实测的波形进行分析,波形信噪比良好,首波为套管内壁的反射波,随后到达的为套管共振波,波形频谱曲线具有明显的谱陷特征.利用井眼内壁反射波的幅度及到时曲线可实现井眼内壁高分辨率成像;利用套管共振波的共振频率及幅度衰减可分别计算套管厚度及套管后面材料的水泥声阻抗.现场实测的裸眼井资料表明,该仪器可获取井壁表面裂缝、层理、孔洞等地质构造信息.处理现场实测的套管井资料表明,仪器可正确测量套管的壁厚,识别套损方位,同时还可以根据水泥声阻抗的数值范围确定一界面材料是气体、液体还是固体成分.该仪器具有井眼内壁成像、套损评价及水泥胶结质量评价的功能.  相似文献   

20.
Power spectral density estimation is often employed as a method for signal detection. For signals which occur randomly, a frequency domain kurtosis estimate supplements the power spectral density estimate and, in some cases, can be employed to detect their presence. This has been verified from experiments with real data of randomly occurring signals. In order to better understand the detection of randomly occurring signals, sinusoidal and narrow-band Gaussian signals are considered, which when modeled to represent a fading or multipath environment, are received as non-Ganssian in terms of a frequency domain kurtosis estimate. Several fading and muitipath propagation probability density distributions of practical interest are considered, including Rayleigh and log-normal. The model is generalized to handle transient and frequency modulated signals by taking into account the probability of the signal being in a specific frequency range over the total data interval. It is shown that this model produces kurtosis values consistent with real data measurements. The ability of the power spectral density estimate and the frequency domain kurtosis estimate to detect randomly occurring signals, generated from the model, is compared using the deflection criterion. It is shown, for the cases considered, that over a large range of conditions, the power spectral density estimate is a better statistic based on the deflection criterion. However, there is a small range of conditions over which it appears that the frequency domain kurtosis estimate has an advantage. The real data that initiated this analytical investigation are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号