首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
陆架沙丘(波)形成发育的环境条件   总被引:9,自引:0,他引:9  
陆架大、中、小、巨沙丘(沙波)发育的动力机制与河流沙波有相似之处,也有许多差异,前者含定时多向的潮流、持续定向的洋流和偶发性的暴风浪流,后者为单向持续水流。20~100cm/s的底流速是发育沙丘的动力因素,水流的多向性和浪流的偶发性又常常制约沙丘发育的强度和迁移的速度;陆架浅水区(小于18m)受破浪的影响,沙丘尺度与水深呈微弱负相关,深水区水深的影响甚微。陆架输沙量是沙丘发育的物质条件,特别是细、中砂底质,在此粒度范围内沙波尺度与粒径呈微弱正相关,平缓广阔的地形在沙丘发育中也起一定的作用。  相似文献   

2.
根据2003和2004年冬季风之后的2次侧扫声呐调查结果,解释了湄公河水下三角洲上5个区85个水下大沙丘。沙丘尺度,高1.4~13.2m,长72~672m的属于Ash-ley(1990)分类的大和特大水下沙丘。沙丘普遍具有不对称的外形,陡坡指向W—SW。南海冬季季风引起的冬季环流汇同黑潮(分支)逆流是塑造沙丘的主要动力,据实测,金兰湾外冬季环流表层流速达1~1.4m/s。水下沙丘形成于冰消期低海面时期,如今仍然顺南海冬季环流西侧自N向W—SW迁移,沙丘迁移速率约为2.78×10-5 m/s量级(按流速1.1m/s计算)。  相似文献   

3.
利用旁扫声呐、浅地层剖面、测深以及钻探等资料分析了海南岛乐东陆架区海底沙波的形态特征、底质及地层结构;分常态和台风作用两种环境条件。计算了沙波的移动速率.并与海南岛东方陆架区沙波特征进行了对比分析.研究表明:乐东陆架沙波以大型沙丘和小型沙波为主。其剖面都极不对称.沙丘多为新月形,波长多为50~100m,波高多为1~3m,对称系数在6~12之间;小型沙歧脊残多置直线型,波高多在0.1~0.5m之间.研究区沙波活动性较强,常态下迁移速率与东方沙波区西区相同,每年0.06~2m;在台风影响下,沙丘表面活动砂层的移动性增强,在活动砂体迁移的部位则可能出现冲蚀凹坑或沟槽;中小型沙波移动速率骤增,最大可达7~11m/h。  相似文献   

4.
海底沉积物运动可由重力作用引起,它常以水下滑坡的形式出现,对高含水量的细颗粒物质尤其是如此(林振宏等,1990);在陆架和陆坡区,水下滑坡可由于地震等事件而诱发。此外,海底稳定性还与水流作用引起的沉积物运动有关,沉积物输运造成相应的堆积和冲刷,从而改变海底的形态。在许多环境中,沉积物输运是控制海底稳定性的主要因素。海底某处高程在一定时段内的变化系由活动层厚度、冲淤量和底部地貌形态(Bedforms)迁移造成的变化等3部分构成(图1),故海底稳定性可分解为以下3个问题:(1)沉积物活动时间(即在一定时段内海底沉积物处于运动状态的时间长度或百分比)和活动层厚度(图1A);(2)沉积物运动所造成的冲刷、淤积及其速率(图1B);(3)底部地貌形态的迁移速率及其造成的海床高程变化(图1C)。 海底沙丘和潮流沙脊是常见的海底地貌形态,有关专家认为(Ashley et al., 1990),海底沙丘是大沙波(波长>30m)、小沙波(波长6-30m)、大波痕(波长0.6-6m)等形态的总称,它可以在沉积物供给充足、大潮流速达到0.6-1.0m/s的海底形成(Stride,1982)。潮流沙脊的规模大于海底沙丘,其高度可达20m以上,两脊之间相距10km左右,形成的流速条件为0.7-1.3m/s,其脊线几乎平行于潮流流向。海底沙丘和湖流沙脊的空间分布上往往具有重现性,即可以形成一系列的沙丘或沙脊。据沉积动力学研究的初步结果,这种周期性的分布与潮流流场特征(如潮流长短轴之比,主流流速、主流不稳定性等)和海底沉积物平面分布的非均匀性有关(Huthnance,1982a, 1982b;Hulscher et al.,1993;Liu,1997)。潮流沙脊可与海底沙丘伴生(Stride,1982;Amos et al.,1984),此类形态的存在说明海底是处于活动和演变的状态,这往往给海洋工程带来一系列的问题。 本文应用水动力学、沉积动力学数学模型方法对砂质海底的上述3个问题分别提出解决方案,从而建立海底稳定性的评估方法。本文还叙述了来自海南岛西部海域的一个算例,以说明该方法的应用步骤和结果解译。  相似文献   

5.
中国沿海很多陆架受潮流水动力的控制,发育了沙脊、沙席和沙波(沙丘)等潮流沉积地貌。闽江河口外首次发现有潮流沙脊群,沙脊群由数条大小不一呈SW—NE向的线状沙脊体组成,局部沙脊连片成为浅滩,相邻沙脊间为侵蚀沟槽,形成脊槽相间排列的地貌形态,沙脊东南翼较西北翼陡,表明沙脊有向东南方向迁移的趋势。通过对沙脊群和闽江口水下三角洲地形地貌、沉积物以及潮流场环境特征的综合分析,认为闽江口外潮流沙脊群是以古闽江口三角洲物质为基础,在全新世海侵过程中,沙脊群区处于近岸河口湾环境下发育,并在现代水动力的作用下形成与潮流方向相吻合的地貌体。  相似文献   

6.
在近岸带,水下沙坝(或沙丘)常以大型沙波的型式作群体运动,从而对多种海岸工程造成威胁。 Choule.J.Sonu等曾以大量实测资料,将进行群体运动的沙波划分为坝式和岬式两类,并分别指出其动力成因;随后又以数理统计方法,确认坝式沙  相似文献   

7.
基于海床土体变形、渗流和溶质运移的耦合数值计算模型,考虑波浪沿沙丘状海底地形传播的浅水效应,本文分析了沙丘状海床内部孔隙水渗流特征和海水中溶质进入沉积物的运移特征,并通过与平底海床计算结果的对比,分析了沙丘状海底地形对溶质迁移的影响特征。结果分析表明,相对于平底海床,沙丘状海床一定深度内孔隙水渗流呈现明显的二维特征,进一步加速了溶质在沉积物中的迁移速率;对于沙丘状海底,对流和水动力弥散均有效促进了溶质向沉积物中的迁移,其中,对流作用相对稳定,而水动力弥散作用随着波浪作用时间的增加而不断减弱。参数分析表明,沙丘地形对溶质运移过程的影响程度基本不受波高的影响,但其随着波浪周期、水深和坡角的增大而增大,随着剪切模量和渗透系数的增大而减小,其中坡角的影响最为显著。  相似文献   

8.
为了研究南海北部海域中、东部陆架坡折带在不同年代的迁移特征,分析了高精度单道地震剖面与地质浅钻等资料。在南海北部海域珠江口外区、东沙区和台湾浅滩区的陆架及陆坡带附近第四纪地层中,共识别出6个三级层序界面以及相应的沉积层序,同时识别了6个区域下切侵蚀面,并以此为依据认识了本区第四纪河道的演化特征,建立了层序地层格架。在此基础上,将该区第四纪陆架坡折带由西至东划分为建设型、侵蚀型和转换型三种类型,讨论了各段陆架坡折带的演化规律,提出构造地貌成因、水下河道发育与沉积物供给等作用均为控制陆架坡折带发育和迁移的主要因素。  相似文献   

9.
利用多道α能谱仪,对2005年8~9月在海南岛近海采集的7个沉积岩芯进行了210Pb的沉积速率测定,探讨了海南岛近海陆架上现代沉积速率的区域性分布特征,结果表明:位于港湾内的B1168站位由于沉积物供应充足,有最高的沉积速率,达2.9 cm/a;位于河口海湾附近且受沿岸流影响的B289站位,有很高的沉积速率,可达1.6 cm/a,沉积环境较稳定;位于西南海底沙脊区北缘且靠近昌化江河口的B97、B135、B10站位也有较高沉积速率,分别达到1.0、0.89和0.47 cm/a,在表层都出现了210Pb放射性活度倒置的现象,表明所处区域有较强混合作用;处于西南外陆架的C4站位受北部湾环流影响,沉积速率为0.6 cm/a;位于东部外陆架的B377站位处于上升流区,沉积速率较低,为0.21 cm/a.可见,海南岛近海陆架上的现代沉积速率存在着明显的区域分布:在物质来源丰富的沿岸流作用区和河口区附近,现代沉积速率很高;在陆架环流沉积作用区,现代沉积速率也较高;在水深较大的外陆架上,由于沉积物供应相对匮乏,沉积速率一般较低;在近岸潮流沙脊区,由于水动力很强,无法形成现代细粒沉积.同时,在陆架上,沉积速率有随着水深的增加而降低的趋势.由此可见,海南岛近海海域的沉积速率与该区的物质供应、水动力条件和海底地形等因素有密切关系.  相似文献   

10.
莱州湾东岸三山岛段砂质海岸沉积物运移动力机制   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对三山岛岸段冬夏重复的地形测量和表层沉积物的粒度分析,研究了其地貌特征与地形变化规律、沉积物类型、粒度特征、运移趋势,并探讨了沉积物运移的动力机制。结果表明:该岸段可根据1985黄海高程-1.2m(低潮水位)和-6.5m(闭合深度)平面划分为海滩、水下岸坡和浅海陆架三个地貌单元,各地貌单元表层沉积物分布规律与地形变化特征区别显著。其中水下岸坡和浅海陆架地貌单元主要受潮流作用,海滩地貌单元主要受波浪作用。在西向落潮流和西南向潮余流的作用下,水下岸坡地貌单元发育一个中等规模潮流通道-沙脊沉积系统。表层沉积物以向西运移的趋势为主,少数滞留于西部潮流沙脊处,与地形"东侵西淤"的变化规律相符,这些西向运移的沉积物最终离开研究区,补给莱州浅滩。  相似文献   

11.
扬子浅滩沙波底形活动性评估   总被引:3,自引:0,他引:3  
扬子浅滩位于长江口以东,水深40 m左右,普遍发育中小水下沙丘并处于运动状态。按32片沙波参数统计,迁移方向在90°~180°之间,其中150°~180°者占30%,120°~150°者占69%;使用Rubin和改进的Hardisty公式计算,以潮流作用为主的常态海况下,沙波迁移率为19.70 m/a,以浪流为主的暴风浪期间,约为12.72 m/a,一年总迁移率约为32.4 m/a,与世界上若干海底沙波定位观测数据相对比,这一迁移率应属于缓慢—中等的量级。  相似文献   

12.
Very large subaqueous sand dunes were discovered on the upper continental slope of the northern South China Sea. The dunes were observed along a single 40 km long transect southeast of 21.93°N, 117.53°E on the upper continental slope in water depths of 160 m to 600 m. The sand dunes are composed of fine to medium sand, with amplitudes exceeding 16 m and crest-to-crest wavelengths exceeding 350 m. The dunes' apparent formation mechanism is the world's largest observed internal solitary waves which generate from tidal forcing on the Luzon Ridge on the east side of the South China Sea, propagate west across the deep basin with amplitudes regularly exceeding 100 m, and dissipate extremely large amounts of energy via turbulent interaction with the continental slope, suspending and redistributing the bottom sediment. While subaqueous dunes are found in many locations throughout the world's oceans and coastal zones, these particular dunes appear to be unique for two principal reasons: their location on the upper continental slope (away from the influence of shallow-water tidal forcing, deep basin bottom currents and topographically-amplified canyon flows), and their distinctive formation mechanism (approximately 60 episodic, extremely energetic, large amplitude events each lunar cycle).  相似文献   

13.
Multibeam swath bathymetric data collected in 95–120 m water depth on Australia’s North West Shelf revealed two distinct populations of sand waves: a laterally extensive, low-amplitude composite form comprising superimposed dunes and ripples, and a laterally restricted form which has unusually high bedform heights and slopes. These large subaqueous sand waves comprise bioclastic ooid/peloid sand. Significantly, evidence of seabed fluid flow was detected in association with the high-amplitude sand waves. This evidence includes seabed pockmarks approximately 2–15 m in diameter imaged with side-scan sonar, tubular and massive carbonate concretions dredged from the seabed, and potential active venting of a fluid plume from the seabed observed during an underwater camera tow. Molecular and isotopic analyses of carbonate concretions collected from within pockmarks associated with the high-amplitude sand waves indicate that the fluids from which they precipitated comprise modern seawater and are not related to thermogenic fluids or microbial gases. The fluid flow is interpreted to be driven by macrotidal currents flowing over the relatively steep slopes of the high-amplitude sand waves. Pockmarks and carbonate concretions then develop where the interstitial flows are confined and focused by subsurface ‘mounds’ in a shallow seismic reflector.  相似文献   

14.
于2010年枯季利用浅地层剖面仪等对长江口自江阴至北港、北槽和南槽口门段河槽浅部地层进行探测.探测结果显示:江阴至徐六泾段落潮流占绝对优势,床沙质以细砂为主,发育有波长约15~25m、波高约0.5~0.8m的沙波;自徐六泾至口门段河槽床面受势力相当的涨、落潮流影响,河槽床面仅偶尔发育有较小尺度的沙波,波长5.0~12m...  相似文献   

15.
In the course of two regional side-scan sonar surveys on the continental shelf off southern Vietnam after the winter monsoon seasons of 2003 and 2004, and covering a total distance of over 1,000 km, the widespread occurrence of large and very large subaqueous dunes was discovered. On the basis of their size, shape, depth of occurrence and orientation, the dunes were grouped into five spatially distinct regions. In each case, a different height/wavelength relationship is observed. With the exception of region no. 3 where dune dimensions follow the mean global trend, the dimensions in the other regions lie below the mean global trend. The most plausible explanation for this is sediment starvation and/or insufficient time for the larger dunes to fully adjust to changing flow conditions. A good correlation is observed between average dune height in each region and water depth, although this is not the case for dune length. The orientation of the dunes corresponds to the direction of the current pattern induced by the regional winter monsoon winds (NE to SW and S). The generally well-developed asymmetrical shapes and the large size of the dunes suggest that the wind-induced currents are strong enough to reactivate most of the dunes during the winter monsoon season, a conclusion supported also by theoretical calculations of critical current velocities. The largest dunes, which seem to have reached their maximum sizes for the local water depths, may not be reactivated regularly but rather only by exceptionally strong episodic flows.  相似文献   

16.
Dune erosion is shown to occur at the embayment of beach mega-cusps O(200 m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Monterey Bay, California. This section of the bay consists of a sandy shoreline backed by extensive dunes, rising to heights exceeding 40 m. There is a large increase in wave height going from small wave heights in the shadow of a headland, to the center of the bay where convergence of waves owing to refraction over the Monterey Bay submarine canyon results in larger wave heights. The large alongshore gradient in wave height results in a concomitant alongshore gradient in morphodynamic scale. The strongly refracted waves and narrow bay aperture result in near normal wave incidence, resulting in well-developed, persistent rip currents along the entire shoreline.

The alongshore variations of the cuspate shoreline are found significantly correlated with the alongshore variations in rip spacing at 95% confidence. The alongshore variations of the volume of dune erosion are found significantly correlated with alongshore variations of the cuspate shoreline at 95% confidence. Therefore, it is concluded the mega-cusps are associated with rip currents and that the location of dune erosion is associated with the embayment of the mega-cusp.  相似文献   


17.
The purpose of this paper is to compare the differences between oceanside and bayside beaches. Field data on twelve beach process and response variables were gathered from February 1972 to April 1973 on four sample beaches at Sandy Hook Spit, New Jersey. Linear correlation is used to identify the most influential process variables and determine how the interrelationships among variables differ on each beach. The analysis confirms the importance of breaker height, wave steepness and wind direction on beach response. The correlation of beach processes with their associated responses are higher on the oceanside than on the bayside beaches, indicating that local, non-storm waves may be relatively insignificant in effecting substantial beach modification.Despite the greater magnitude of processes and beach change on the oceanside sites, erosion was more persistent on the bayside during the period of study. The frequent occurrence of short, steep erosional waves on the bayside prevented onshore movement of sediment between storms, resulting in a permanent loss of material from the beach face and dune. On the oceanside, long, low, depositional waves occurring between storms replenished most of the material carried away during the storm. This fresh beach material acted as a buffer against the erosion of the dunes during the following storm.The dominant bay waves are locally generated and may therefore be simulated using meteorological variables. However, the low wave energies on the bayside sites result in an increase in the relative importance of tidal currents, wind-induced currents, and refracted ocean swell. These factors complicate the application of simplified wave process—beach response models to the study of beaches exposed to these effects.  相似文献   

18.
Abstract

Lower Cook Inlet in Alaska has high‐ tidal currents that average 3–4 knots and normally reach a peak of 6–8 knots. The bottom has an average depth of about 60–70 m in the central part of the inlet that deepens toward the south. Several types of bedforms, such as sand waves, dunes, ripples, sand ribbons, and lag deposits form a microtopography on the otherwise smooth seafloor. Each bedform type covers a small field, normally a few hundred to a few thousand meters wide, and usually several kilometers long parallel to the tidal flow. High‐resolution seismic systems, side‐scan sonar and bottom television were used to study these bedforms. Large sand waves with wavelengths over 300 m and wave heights up to 10 m were observed. Fields of ebb‐oriented or flood‐oriented asymmetric bedforms commonly grade into more symmetric shapes. Several orders of smaller sand waves and dunes cover the flanks of the very large bedforms. The crest directions of both size groups are normally parallel, but deviations of up to 90° have been observed; local deviations may occur where smaller forms approach the crests of the larger sand waves. Bottom television observations demonstrated active bedload transport in a northerly direction on crests and midflanks of southward asymmetric large sand waves, but not in their troughs. Movement of bedload occurs in the form of small ripples. Although the asymmetry of the large bedforms suggests that migration has taken place in the ebb or flood directions, the very low surface angles (2.5°‐8°) of these bedforms do not indicate regular movements. The large bedforms are probably relict features, or they migrate only under severe conditions, whereas active sand transport by ripples and smaller sand waves and dunes moves bedload back and forth with the tides. An understanding of such movements is essential for determining design criteria for offshore installations and in benthic‐faunal studies.  相似文献   

19.
The response of subaqueous dunes to the variation of riverine sediment supply in an estuary is rarely reported. Five sets of field measurements of bed sediments and topography were made in the Changjiang estuary, China during dry and flood seasons for the past 9 years. Results show that dunes were mainly three-dimensional (3D) during flood seasons and two-dimensional (2D) dunes during dry seasons. Dunes were also much larger in flood seasons. Dunes mainly occurred within the main channels of the estuary although they extended 11.7 km seaward of their normal extent in the South Channel during dry seasons from 2002 to 2006. This extension of the dune field is likely due to a sharp decline of sediment discharge caused by large reservoirs such as Three Gorges.  相似文献   

20.
《Marine Geology》2003,193(3-4):171-176
Megaripples in the combined flow environment of the nearshore are proposed to behave like dunes or large ripples in rivers, tidal estuaries, and deserts. Their profile basically is symmetric and thus significantly different from the traditional asymmetric triangular features observed in steady flows. Similarly their planform often exhibits little directionality, unlike crescentic or lunate steady flow dunes that point in the downstream direction. These characteristics are the result of complex combined flows in the nearshore, including oscillatory flows, wave skewness, and steady currents (undertow, rips and alongshore flows). Recent observations of megaripples in the nearshore suggest that they occur frequently. However, they are rarely considered in studies of flow resistance or sediment transport. In addition, megaripples are thought to be the source of hummocky cross-stratification in sedimentary sequences and are generally attributed to storm waves on inner continental shelves. However, observations show that they also exist inside the surf zone and under lower-energy conditions. A better understanding of their dynamics and thus their occurrence and characteristics would improve the understanding of nearshore wave and circulation dynamics, sediment transport, large-scale morphodynamics, and the resulting sedimentary sequences. It is hypothesized that megaripples in the nearshore are dynamically similar to steady flow features, which are observed in rivers, estuaries and deserts and have been studied in much more detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号