首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A large area of unrealized precipitation is produced with the standard convective parameterization scheme in a high-resolution model, while subgrid-scale convection that cannot be explicitly resolved is omitted without convective parameterization. A modified version of the convection scheme with limited mass flux at cloud base is introduced into a south-China regional high-resolution model to alleviate these problems. A strong convection case and a weak convection case are selected to analyze the influence of limited cloud-base mass flux on precipitation forecast. The sensitivity of different limitation on mass flux at cloud base is also discussed. It is found that using instability energy closure for Simplified Arakawa- Schubert Scheme will produce better precipitation forecast than the primary closure based on quasi-equilibrium assumption. The influence of the convection scheme is dependent on the upper limit of mass flux at cloud base. The total rain amount is not so sensitive to the limitation of mass flux in the strong convection case as in the weak one. From the comparison of two different methods for limiting the cloud-base mass flux, it is found that shutting down the cumulus parameterization scheme completely when the cloud-base mass flux exceeds a given limitation is more suitable for the forecast of precipitation.  相似文献   

2.
The Canadian Centre for Climate Modelling and Analysis atmospheric general circulation model (AGCM4) is used to study the role of shallow convection in the hydrologic and energy cycles of the atmosphere. Sensitivity tests with AGCM4 show a marked effect of the parameterization of shallow convection in the model. In particular, including the parameterization of shallow convection produces considerably enhanced vertical mixing and decreased stratiform cloud amounts in the lower subtropical atmosphere over the oceans. The differences in simulated stratiform cloud amounts are associated with a change in the globally averaged outgoing shortwave radiative flux at the top of the atmosphere of about 11 W m−2. Additionally, precipitation rates are considerably reduced for stratiform clouds and enhanced for convective clouds in the subtropics, if the parameterization of shallow convection is included in the model. Additional tests show that the simulated responses in cloud amounts and precipitation to the treatment of shallow convection are robust. Additional simulations with modified closures for deep convection and other changes to the treatment of convection in the model still lead to similar responses of the model results.  相似文献   

3.
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.  相似文献   

4.
Tongwen Wu 《Climate Dynamics》2012,38(3-4):725-744
A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14), doi:10.1029/2001JD001005, 2002) in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program’s (ARM) summer 1995 and 1997 Intensive Observing Period (IOP) observations, and field observations from the Global Atmospheric Research Program’s Atlantic Tropical Experiment (GATE) and the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The SCM can generally capture the convective events and produce a realistic timing of most events of intense precipitation although there are some biases in the strength of simulated precipitation.  相似文献   

5.
The Madden–Julian oscillation (MJO) is simulated using an AGCM with three different cumulus parameterization schemes: a moist convective adjustment (MCA) scheme, the Zhang–McFarlane (ZM) mass-flux scheme, and the Tiedtke scheme. Results show that the simulated MJO is highly dependent on the cumulus parameterization used. Among the three cumulus parameterizations, only the MCA scheme produces MJO features similar to observations, including the reasonable spatial distribution, intraseasonal time scales and eastward propagation. Meanwhile, the amplitude is too large and the eastward propagation speed too fast than observations and the relationship between precipitation and low-level wind anomaly is unrealistic with enhanced convection occurring within easterly anomalies instead of westerly anomalies as in observations. The over-dependence of precipitation on boundary convergence produced by the MCA scheme is presumably responsible for this unrealistic phase relation in the simulation. The other two schemes produce very poor simulations of the MJO: spectral power of westward propagation is larger than that of eastward propagation in zonal wind and precipitation, indicating a westward propagation of the intraseasonal variability.The mean state and vertical profile of diabatic heating are perhaps responsible for the differences in these simulations. The MCA scheme produces relatively realistic climate background. When either ZM or Tiedtke scheme is used, the observed extension of westerly winds from the western Pacific to the dateline is missing and precipitation over the equatorial region and SPCZ is dramatically underestimated. In addition, diabatic heating produced by both ZM and Tiedtke schemes are very weak and nearly uniform with height. The heating profile produced by the MCA scheme has a middle-heavy structure with much larger magnitude than those produced by the other two schemes. In addition, a very unrealistic boundary layer heating maximum produced by the MCA scheme induces too strong surface convergence, which perhaps contributes to the too strong intraseasonal variability in the simulation.  相似文献   

6.
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a “bulk” cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present,this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme,although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved.The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation eoetfieient between the simulation and the observations confirms the improved results.  相似文献   

7.
The validity of a spectral cumulus parameterization (spectral scheme) for simulating a diurnal cycle of precipitation over the Maritime Continent (MC) was examined using a regional atmospheric model. The impacts of entrainment parameterization and each type of convective closure, i.e., non-equilibrium (or equilibrium) closure for deep convection, mid-level, and shallow convective closures, were also examined. When vertically variable entrainment and appropriate convective closures were employed, the model adequately simulated a diurnal cycle of precipitation over both land and ocean as compared to the observation. Analysis regarding the entrainment parameterization revealed that variable entrainment parameterization was needed not only for simulating better mean patterns of precipitation, but also for more realistic phases of diurnal cycles. The impacts of convective closures appeared in the differences in the precipitation amplitude. Analysis on diurnal cycles of convective properties and tendencies revealed that the cycles between boundary layer forcing and convective heating determined convection strength and were affected by each type of convective closure. It can be concluded that the spectral scheme with appropriate convective closures is able to simulate a realistic diurnal cycle over the MC.  相似文献   

8.
黄安宁  张耀存  朱坚 《大气科学》2009,33(6):1212-1224
利用PσRCM9区域气候模式, 分析了中国夏季不同强度降水模拟对不同积云对流参数化方案的敏感性。结果表明, 采用四种积云对流参数化方案, 模式能够模拟出小雨、 大雨和暴雨的雨量百分比和雨日百分比空间分布的一致性特征, 但不能模拟出中雨雨量百分比和雨日百分比空间分布的相似性, 这是由于模式不能模拟中雨雨量百分比的空间分布形式所致。还发现模拟的我国夏季降水以小雨和中雨为主, 四种积云对流参数化方案均低估了中国夏季大雨和暴雨对总降水的贡献, 尤其是在我国西部、 东北和华北地区更明显。不同积云对流参数化方案下模拟的极端强降水阈值的空间分布形式基本与观测一致, 但强度与观测存在较大差异。相比较而言, Grell方案较Kuo、 Anthes-Kuo和Betts-Mille积云对流参数化方案更适合中国东南部地区夏季极端强降水的模拟。  相似文献   

9.
A mass flux closure in a general circulation model (GCM) was developed in terms of the mean gradient Richardson number (GRN), which is defined as the ratio between the buoyancy and the shear-driven kinetic energy in the planetary boundary layer. The cloud resolving model (CRM) simulations using the tropical ocean and global atmosphere-coupled ocean–atmosphere response experiment forcing show that cloud-base mass flux is well correlated with the GRN. Using the CRM simulations, a mass flux closure function is formulated as an exponential function of the GRN and it is implemented in the Arakawa–Schubert convective scheme. The GCM simulations with the new mass flux closure are compared to those of the GCM with the conventional mass flux closure based on convective available potential energy. Because of the exponential function, the new closure permits convective precipitation only when the GRN has a sufficiently large value. When the GRN has a relatively small value, the convection is suppressed while the convective instability is released by large-scale precipitation. As a result, the ratio of convective precipitation to total precipitation is reduced and there is an increase in the frequency of heavy precipitation, more similar to the observations. The new closure also improves the diurnal cycle of precipitation due to a time delay of the large GRN with respect to convective instability.  相似文献   

10.
Observations of temperature, pressure and humidity have been made from an aircraft beneath cumulus clouds which formed over extensive flat country. In fair weather over land, cumulus cloud base is generally above the average top of the well-mixed convection layer so that penetrative convection is necessary to initiate cloud formation. The convective layer does not evolve and deepen uniformly over large areas (say greater than 100-km radius). Rather, it develops a patchy structure at 1–10 km scales. Such patches, close beneath cloud base, have thermodynamic properties very like those of the convection layer and in such regions that layer effectively extends right up to cloud base. Meso-scale effects (e.g., 50 km) seem to be important in determining where clear and cloudy areas occur, and although it appears reasonable to attribute this to local dynamic effects (e.g., subsidence), it is not possible to eliminate other possibilities on the basis of the present data.  相似文献   

11.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   

12.
Cloud and precipitation parameterization schemes are evaluated, and their sensitivity to the method and/or parameters used to determine cloud physical processes is examined using a singlecolumn version of the Unified Model (SCUM). In the experiment for TWP-ICE, cloud fraction is overestimated (underestimated) in the upper (lower) troposphere due to the wet (dry) bias. The precipitation rate is well simulated during the active monsoon period, but overestimated during the suppressed monsoon and clear skies periods. In the moist convection scheme, trigger condition and entrainment process affect the lower tropospheric humidity through the impact on convective occurrence frequency and intensity, respectively. Strengthening the trigger condition and using the adaptive entrainment method alleviate the low-level dry bias. In the microphysics scheme, more large-scale precipitation is produced with prognostic rain, due to rain sedimentation considering vertical velocity of rain drop, than with diagnostic rain. Less ice/snow deposition with the prognostic two-ice category results in lower ice water content and upper-level cloud fraction than with the diagnostic splitting method for the twoice category. In the cloud macrophysics scheme, the prognostic cloud fraction and cloud/ice water content scheme produces a larger cloud fraction and more cloud/ice water content than the diagnostic scheme, mainly due to detrainment from moist convection (cloud source) that surpasses the effect of convective heating and drying (cloud sink). This affects temperature by influencing the radiative, convective, and microphysical processes. The experiment with combined modifications in cloud and precipitation schemes shows that interaction between modified moist convection and cloud macrophysics schemes results in more alleviation of the cold bias not only at the lower levels but also at the upper levels.  相似文献   

13.
陆气相互作用对中尺度对流系统影响的研究进展   总被引:1,自引:1,他引:0  
单机坤  沈学顺  李维京 《气象》2013,39(11):1413-1421
文章回顾了大气对地表性质的敏感性研究,以及陆气相互作用对中尺度天气过程的影响,说明了地表性质与积云对流及对流降水之间的联系。地表性质的改变对行星边界层的热通量、水汽通量、对流有效位能产生影响,并通过湍流的垂直输送,进而影响到其上大气的性质。陆气之间存在着复杂的、非线性的相互作用。性质不均匀的下垫面造成地表向大气感热通量和潜热通量的差异,从而在近地层大气中形成温度和气压梯度,产生局地环流,在条件适合的情况下可以形成对流,并产生降水,而降水的不均匀分布,又维持了下垫面的不均匀性。土壤湿度对对流的影响受到多个因素的制约,其中天气尺度过程的影响是很显著的;由非均匀的下垫面所产生的局地环流能够触发积云对流。  相似文献   

14.
Summary A set of the inhomogeneity factor for high-level clouds derived from the ISCCP D1 dataset averaged over a five-year period has been incorporated in the UCLA atmospheric GCM to investigate the effect of cirrus cloud inhomogeneity on climate simulation. The inclusion of this inhomogeneous factor improves the global mean planetary albedo by about 4% simulated from the model. It also produces changes in solar fluxes and OLRs associated with changes in cloud fields, revealing that the cloud inhomogeneity not only affects cloud albedo directly, but also modifies cloud and radiation fields. The corresponding difference in the geographic distribution of precipitation is as large as 7 mm day−1. Using the climatology cloud inhomogeneity factor also produces a warmer troposphere related to changes in the cloudiness and the corresponding radiative heating, which, to some extent, corrects the cold bias in the UCLA AGCM. The region around 14 km, however, is cooler associated with increase in the reflected solar flux that leads to a warmer region above. An interactive parameterization for mean effective ice crystal size based on ice water content and temperature has also been developed and incorporated in the UCLA AGCM. The inclusion of the new parameterization produces substantial differences in the zonal mean temperature and the geographic distribution of precipitation, radiative fluxes, and cloud cover with respect to the control run. The vertical distribution of ice crystal size appears to be an important factor controlling the radiative heating rate and the consequence of circulation patterns, and hence must be included in the cloud-radiation parameterization in climate models to account for realistic cloud processes in the atmosphere.  相似文献   

15.
Model precipitation can be produced implicitly through convective parameterization schemes or explicitly through cloud microphysics schemes. These two precipitation production schemes control the spatial and temporal distribution of precipitation and consequently can yield distinct vertical profiles of heating and moistening in the atmosphere. The partition between implicit and explicit precipitation can be different as the model changes resolutions. Within the range of mesoscale resolutions (about 20 km) and cumulus scale, hybrid solutions are suggested, in which cumulus convection parameterization is acting together with the explicit form of representation. In this work, it is proposed that, as resolution increases, the convective scheme should convert less condensed water into precipitation. Part of the condensed water is made available to the cloud microphysics scheme and another part evaporates. At grid sizes smaller than 3 km, the convective scheme is still active in removing convective instability, but precipitation is produced by cloud microphysics. The Eta model version using KF cumulus parameterization was applied in this study. To evaluate the quantitative precipitation forecast, the Eta model with the KF scheme was used to simulate precipitation associated with the South Atlantic Convergence Zone (SACZ) and Cold Front (CF) events. Integrations with increasing horizontal resolutions were carried out for up to 5 days for the SACZ cases and up to 2 days for the CF cases. The precipitation partition showed that most of precipitation was generated by the implicit scheme. As the grid size decreased, the implicit precipitation increased and the explicit decreased. However, as model horizontal resolution increases, it is expected that precipitation be represented more explicitly. In the KF scheme, the fraction of liquid water or ice, generated by the scheme, which is converted into rain or snow is controlled by a parameter S 1. An additional parameter was introduced into KF scheme and the parameter acts to evaporate a fraction of liquid water or ice left in the model grid by S 1 and return moisture to the resolved scale. An F parameter was introduced to combine the effects of S 1 and S 2 parameters. The F parameter gives a measure of the conversion of cloud liquid water or ice to convective precipitation. A function dependent on the horizontal resolution was introduced into the KF scheme to influence the implicit and explicit precipitation partition. The explicit precipitation increased with model resolution. This function reduced the positive precipitation bias at all thresholds and for the studied weather systems. With increased horizontal resolution, the maximum precipitation area was better positioned and the total precipitation became closer to observations. Skill scores for all events at different forecast ranges showed precipitation forecast improvement with the inclusion of the function F.  相似文献   

16.
近三十年来,积云参数化的研究已取得了很大进展,随着中尺度业务模式的研制,中尺度模式中如何考虑对流遂成为人们研究的热门课题之一。   相似文献   

17.
利用NCEP FNL再分析资料为初始场,通过WRF中尺度数值模式(V3.9.1版本)对2015年8月26~27日青藏高原那曲地区一次对流云降水过程进行了模拟,分析了不同积云对流参数化方案和云微物理参数化方案组合对本次降水过程中降水量、环流场、雷达反射率以及云微物理特征模拟效果的影响。结果表明:WRF模式能较好地模拟出本次降水的时空变化特征,但不同参数化方案组合各有优势,总体而言,Grell-Devenyi+SUBYLIN和Grell-Freitas+SUBYLIN组合模拟性能最优。本次对流云降水以冰相过程为主,雪粒子贡献最大,暖云粒子对降水的影响并不明显。从云微物理过程的时间演变可看出,性能最好的SUBYLIN方案能合理模拟降水过程中雪粒子与冰晶粒子间的转换过程,雪粒子可在凝结过程中释放潜热促使对流运动发展,也可通过融化过程促进降水发生,对流层高层冰晶粒子凝华产生的潜热释放亦为深对流的发展创造了有利条件。   相似文献   

18.

A new closure and a modified detrainment for the simplified Arakawa–Schubert (SAS) cumulus parameterization scheme are proposed. In the modified convective scheme which is named as King Abdulaziz University (KAU) scheme, the closure depends on both the buoyancy force and the environment mean relative humidity. A lateral entrainment rate varying with environment relative humidity is proposed and tends to suppress convection in a dry atmosphere. The detrainment rate also varies with environment relative humidity. The KAU scheme has been tested in a single column model (SCM) and implemented in a coupled global climate model (CGCM). Increased coupling between environment and clouds in the KAU scheme results in improved sensitivity of the depth and strength of convection to environmental humidity compared to the original SAS scheme. The new scheme improves precipitation simulation with better representations of moisture and temperature especially during suppressed convection periods. The KAU scheme implemented in the Seoul National University (SNU) CGCM shows improved precipitation over the tropics. The simulated precipitation pattern over the Arabian Peninsula and Northeast African region is also improved.

  相似文献   

19.
WRF模式对青藏高原南坡夏季降水的模拟分析   总被引:2,自引:0,他引:2  
利用中尺度数值模式WRF研究积云对流参数化方案、网格嵌套技术和模式分辨率对陡峭的青藏高原南坡夏季降水模拟的影响。对2006年7月青藏高原南坡地区降水的模拟分析表明:降水对积云对流参数化方案的选择很敏感,不同方案模拟的结果差异显著,采用Grell-Devenyi质量通量方案时的模拟效果优于其他方案。在此基础上,通过5种试验方案比较发现,使用积云对流参数化方案、提高模式分辨率和应用网格嵌套技术能改善降水强度和空间分布的模拟,组合使用时模拟的降水与观测资料更接近。它们均能改进风场,使得水汽的输送和辐合过程的模拟更加准确;还能影响大气的垂直加热状态,导致不同的对流发生,使垂直速度的分布趋于合理。未使用积云对流参数化方案时,大气湿度偏小,而模式分辨率和网格嵌套技术对大气湿度的影响不大。   相似文献   

20.
南海夏季风爆发的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
利用高分辨率的区域气候模式 (RegCM_NCC) 对南海夏季风爆发进行模拟研究。研究表明:该模式对积云对流参数化方案的选择十分敏感, 其中以Kuo积云参数化方案为最好, 可以比较成功地模拟出南海夏季风的爆发时间、爆发前后高、低层风场的剧烈变化以及季风与季风雨带的向北推进。然而该方案对于雨量和副热带高压位置的模拟, 与观测相比尚存在一定的偏差, 主要表现为副热带高压位置模拟偏北、偏东; 南海地区的降水量模拟偏少、降水范围偏小。此外, 采用4种参数化方案 (Kuo, Grell, MFS, Betts-Miller) 集成的结果在某种程度上要优于单个方案的结果, 这种改善主要体现在对南海地区季风爆发后降水的模拟上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号