首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

2.
Surface geophysics and a priori information were employed to delineate the subsurface geology at Idi-oro in Abijo, Ibeju Lekki area of Lagos, Nigeria for foundation investigation purpose. Resistivity measurement was conducted using 1-D and 2-D resistivity probing techniques. The resistivity measurements were made with ABEM tetrameter model SAS 1000 system. The 1-D vertical electrical resistivity sounding data were obtained using the Schlumberger electrode array while the 2-D resistivity data were obtained using the dipole–dipole array. The interpreted results revealed three to five subsurface geological layers. This is made up of the top soil with resistivity values that vary from 132.4 to over 2,313.5 Ω?m and thickness values that range from 0.3 to 4.8 m, the fine sand with resistivity values that vary from 221.0 to 3,032.7 Ω?m and thickness values that range from 0.4 to 5.5 m, the medium sand with resistivity values that vary from 202.8 to 1,247.7 Ω?m and thickness values that range from 4.9 to 58.4 m. On the other hand, the clayey sand has the resistivity values that vary from 146.1 to 1,744.0 Ω?m and thickness values that vary from 2.2 to 26.3 m, while the coarse sand has resistivity values that vary from 238.3 to 14,313.9 Ω?m but with no thickness value because the current terminated in this layer. The resistivity data correlate well with borehole logs. On the whole, it is concluded that the investigated area has competent sand layer that can support medium to giant engineering structures with resistivity values that vary from 202 to 14,314 Ω?m and thickness values that vary from 0.8 to 58.4 m.  相似文献   

3.
Geoelectric investigation using vertical electrical sounding (VES) (Schlumberger electrode configuration) was carried out in 14 locations at Ninth Mile area, southeastern Nigeria to determine the variations and interrelationship of some geoelectric and geohydraulic parameters of a sandstone hydrolithofacies. The measured resistivity data were interpreted using manual and computer software packages, which gave the resistivity, depth, and thickness for each layer within the maximum current electrodes separation. The aquifer resistivity values range from 86.56 to 4753.0 Ωm with 1669.40 Ωm average value. The values of water resistivity from borehole locations close to the sounding points range from 79.49 to 454 .55 Ωm and averaging about 264.7 Ωm. Porosity values of the sandy aquifer range from 30.19 to 34.20%. Fractional porosity values range from 0.3019 to 0.3292, while the tortuosity values vary between 2.91 and 22.85. The geohydraulic parameters estimated vary across the study area. Formation factor ranges from 0.28 to 15.29, hydraulic conductivity ranges from 1.21 to 66.54 m/day which, however, influences the natural flow of water in the aquifer while tortuosity values range from 2.91 to 23.27. The contour maps clearly show the variation of these parameters in the subsurface and the plots show their relationship and high correlation coefficients with one another. The results of this study have revealed the geological characteristics of the subsurface aquifer, established the influence on the amount of groundwater, and proposed a strategy for the management and exploitation of groundwater resources in the area and other aquiferous formations.  相似文献   

4.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

5.
El Bahariya Oasis is a part of the great groundwater reservoir of the Western Desert of Egypt. The different stratigraphic units, the water-bearing zones, aquifer potentiality conditions, and the favorable locations for drilling new wells were evaluated by carrying out 24 Schlumberger vertical electrical soundings (VESs), along with the data of some wells drilled in the near vicinity of the measuring sites. The results of the interpreted field data revealed the presence of ten distinctive subsurface geoelectric layers; a thin surface, dry loose sand and gravel, sandy clay and shale interclations, saturated coarse sand layer, shale and clay, and saturated fine sandstone and saturated coarse sandstone. The aquifer is a multilayer aquifer with different thicknesses represented by the fourth, sixth, eighth, and tenth geoelectric layers. Results also revealed that the thicknesses of the water-bearing horizons increase towards the east direction, consequently the aquifer potentiality increases. Therefore, the best production well locations are in that direction. Depth to water starts from 40 m at VES no. 14 and increases gradually toward the east to reach 66 m at VES no. 5. Hydrogeochemical analysis of two groundwater samples taken from Ein El Ezza and well no. 2 showed that groundwater in the study area is suitable for agricultural purposes but not for human consumption due to the high iron content. Recommendations concerning site selection for drilling new productive groundwater wells are given.  相似文献   

6.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

7.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

8.
Twenty seven vertical electrical sounding (VES) profiles surrounding four known traverses were obtained in Ngor-Okpala local government area of Imo state to examine the subsurface geomaterials and the associated groundwater potential. The VES data, constrained by borehole data, provided useful information about the subsurface hydrogeologic and lithologic conditions. From the validated interpretation, the area assessed has loamy soil, medium grained sands, well-sorted medium-grained/gravelly sands and river sand as the lithologic succession from top to the bottom of the depth penetrated. The aquifers in the area were found in the medium-grained sands and well-sorted medium-coarse-grained sands. The aquifer depth for all-season groundwater that would be devoid of draw-down can be found at a depth range of 42–50 m. The resistivity maps of selected depths exhibit sharp resistivity changes at depth due mainly to undulating subsurface topography. A map of the distribution of the kσ-values shows that good quality groundwater can be found in most parts of the area.  相似文献   

9.
Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in constructing these models remains subjective, nonunique, and uncertain. A three-step machine-learning approach is proposed in which fusion, estimation, and clustering operations are performed on different data sets to arrive at HSUs at different scales. In step one, data fusion is performed by training a self-organizing map (SOM) with sparse borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. Application of the Davies-Bouldin criteria to k-means clustering of SOM nodes is used to determine the number and location of discontinuous borehole HSUs with low lateral density (based on borehole spacing at 100 s m) and high vertical density (based on cm-scale logging). In step two, a scaling network is trained using the estimated borehole HSUs, airborne electromagnetic measurements, and numerically inverted resistivity profiles. In step three, independent airborne electromagnetic measurements are applied to the scaling network, and the estimation performed to arrive at a set of continuous HSUs with high lateral density (based on sounding locations at meter (m) spacing) and medium vertical density (based on m-layer modeled structure). Performance metrics are used to evaluate each step of the approach. Efficacy of the proposed approach is demonstrated to map local-to-regional scale HSUs using hydrogeophysical data collected at a heterogeneous surficial aquifer in northwestern Nebraska, USA.  相似文献   

10.
Electrical imaging of the groundwater aquifer at Banting,Selangor, Malaysia   总被引:1,自引:0,他引:1  
A geophysical study was carried out in the Banting area of Malaysia to delineate groundwater aquifer and marine clay layer of the alluvial Quaternary deposits of Beruas and Gula Formations. The Beruas Formation is formed by peat and clayey materials as well as silt and sands, whereas the Gula Formation consists of clay, silt, sand and gravels. Both Formations were deposited on top of the Carboniferous shale of the Kenny Hill Formation. A 2-D geoelectrical resistivity technique was used. Resistivity measurement was carried out using an ABEM SAS 4000 Terrameter. The 2-D resistivity data of subsurface material for each survey line was calculated through inverse modelling and then compared with borehole data. The resistivity images of all the subsurface material below the survey lines show similar pattern of continuous structure of layering or layers with some lenses with resistivity ranging from 0.1 to 50 Ωm. The upper layer shows resistivity values ranging from 0.1 to 10 Ωm, representing a clay horizon with a thickness up to 45 m. The second layer with depth varies from 45 to 70 m below surface and has resistivity values ranging from 10 to 30 Ωm. Borehole data indicate coarse sand with some gravels for this layer, which is also the groundwater aquifer in the study area. The lowermost layer at a depth of 70 m below ground level shows resistivity values ranging from 30–50 Ωm and can be correlated with metasedimentary rocks consisting of shale and metaquartzite.  相似文献   

11.
The integrated geophysical interpretation for the different geophysical tools such as resistivity and gravity is usually used to define the structural elements, stratigraphic units, groundwater potentiality, and depth to the basement rocks. In the present work, gravity and resistivity data were utilized for detecting the groundwater aquifer and structural elements, as well as the upper and lower surfaces of the subsurface basaltic sheet in an area located at the eastern side of Ismailia Canal, northeastern Greater Cairo, Egypt. Two hundred and ten gravity stations were measured using an Autograv instrument through a grid pattern of 50?×?50 m. The different required corrections were carried out, such as drift, elevation, tide, and latitude corrections. The final corrected data represented by the Bouguer anomaly map were filtered using high- and low-pass filters into regional and residual gravity anomaly maps. The resulting residual gravity anomaly map was used for gravity modeling to calculate the depths to the upper and lower surfaces of the basaltic sheet. The resulting gravity models indicated that the depths to the upper surface of the basaltic sheet are ranged between 26 and 314 m, where the shallower depths were found around the southern and eastern parts. The depths to the lower surface of the basaltic sheet are varied from 86 to 338 m, and the thickness of the basaltic sheet is ranged from 24 to 127 m, where the biggest thicknesses were found around the southern and northern parts of the study area. Forty-two vertical electrical soundings (VES) were carried out using Schlumberger configuration with AB/2 spacings ranged from 1.5 to 500 m. 1D quantitative interpretation was carried out through manual and analytical interpretations. The VES data were also inverted assuming a 3D resistivity distribution. The results from the 3D resistivity inversion indicated that the subsurface section consists of sand, sandstone, and sandy–clays of Miocene deposits overlying the basalts. Such basaltic features (of Oligocene age) are underlain by Gabal Ahmar Formation of Oligocene deposits, which are composed of sand and sandstone. Therefore, two aquifers were deduced in the area. The first is the Miocene aquifer (shallower) and the other is the Oligocene aquifer (deeper).  相似文献   

12.
Vertical electrical soundings technique was used to evaluate the aquifer characteristics and distribution in the northern part of Paiko in Nigeria. A total of thirty vertical electrical soundings were carried out using ABEM SAS4000 Terrameter, and the data was analyzed both manually and with software (Resist software). The result revealed the aquifer resistivity and thickness to vary from 10.9 to 80,368 Ωm, and 1.06 to 72 m, respectively. Also, hydraulic conductivity ranges from 0.010267 to 41.61928 m/day while transmissivity values range from 0.035215 to 70.09302 m2. The hydrogeological maps (hydraulic conductivity and transmissivity image maps) showed the variations of these parameters in the study area and that the southwestern part of the area has prolific aquifer.  相似文献   

13.
Geological transition zones are noted to be problematic in groundwater potential and development, due to their erratic and complex nature as well as characteristic of the subsurface lithologies. There were several occurrences of reported borehole failures and dry wells in these zones in Nigeria as a result of very scanty information that could serve as database for studying its groundwater potential. This study was therefore designed to generate hydrogeophysical data that could serve as baseline information on the groundwater potential in the study. In addition, to also delineate various subsurface lithologies present. Electrical resistivity survey for geophysical investigation was carried out using vertical electrical sounding (VES) technique. A total of 150 VES stations were purposively probed using Schlumberger electrode array. The interpreted data were used to produce geoelectric subsurface lithologies and to draw the geological section across the entire area. Various subsurface lithologies with their resistivities (Ωm) were delineated for basement complex (BC), transition zone (TZ), and sedimentary terrain (ST). In BC were topsoil, weathered zone, and fresh bedrock and in TZ were topsoil, sandy, laterite/clay, dry sand, sandstone, and fresh bedrock delineated while in the ST, topsoil, lateritic and sandy clay, dry sand, and the sandstone were delineated. In conclusion, the groundwater potential of the study area is largely been affected by the topography and the nature/composition of the Abeokuta Group that underlie the sedimentary part of the study area and the presence of thick laterite/clay unit of the basement complex portion of the study area.  相似文献   

14.
The vertical electrical sounding (VES) survey was carried out by using Schlumberger array in (12) points distributed along two profiles, except VES 6 was not located within any profile. The 2D imaging survey was carried out using Wenner array in four stations. The VES results revealed the presence of two groundwater aquifers. The first is Euphrates aquifer and the second is Dammam aquifer. While the results of 2D imaging survey distinguished two secondary aquifers in addition to previous aquifers located within Dammam formation. Also, 2D imaging gave a more accurate picture for the distribution of electrical horizons especially for the depths which ranges between 2.5 and 73 m. While the VES gives information for larger depths than that of 2D, which ranges between the earth’s surface and a depth 140 m. The geo-electrical sections of VES showed electrical horizons (layers) with sharp boundaries. But the 2D inverse models revealed the lateral and vertical variations of the resistivity within each horizon especially for shallow depths due to large volume of data available in 2D measurement. These variations were not shown in the geo-electrical sections of VES points. Comparison of VES and 2D imaging techniques revealed that the 2D imaging was the best for determined the shallow aquifers as observed from this study. It can be concluded that 2D resistivity imaging and VES can provide very useful guide for borehole drilling particularly where there is no existing well.  相似文献   

15.
Detailed local geological, geophysical, and hydrogeological investigations were carried out for the alluvial aquifer in the Kangavar basin, West Iran to delineate the architecture of different subsurface geological horizons using lithologs and generated vertical electrical sounding (VES) data. An attempt has also been made to estimate aquifer transmissivity from resistivity data. Forty VESs were recorded with the Schlumberger electrode configuration in the study area; 28 of these were selected for evaluation. The maximum current electrode spacing was 400–500 m. The data obtained were interpreted by computer iterative modeling with curve matching for calibration purposes. In order to ascertain the subsurface geological framework, the general distribution of resistivity responses of the geological formations was obtained and geoelectrical sections along a number of lines were prepared. Probable aquifer horizons from these sections were identified. The transmissivity of the unconfined aquifer was computed by determining the Dar-Zarrouk parameters (longitudinal unit conductance and transverse unit resistance) and were compared with the actual field transmissivity. The results showed a direct relation between aquifer transmissivity and modified transverse resistance.  相似文献   

16.
A geoelectrical resistivity survey using vertical electrical sounding (VES) was conducted at Chaj Doab (land between rivers Jhelum and Chenab, Pakistan) and Rachna Doab (land between rivers Chenab and Ravi, Pakistan), with the objective of investigating groundwater conditions. A total of 90 sites were selected with 43 sites in Chaj and 47 sites in Rachna Doabs. The resistivity meter (ABEM Terrameter SAS 4000, Sweden) was used to collect the VES data by employing a Schlumberger electrode configuration, with half current electrode spacings (AB/2) ranging from 2 to 180 m and the potential electrode (MN) from 1 to 40 m. The field data were interpreted using the Interpex IX1D computer software and the resistivity versus depth models for each location was estimated. The outputs of subsurface layers with resistivities and thickness presented in contour maps and 3-D views by using SURFER software were created. A total of 102 groundwater samples from nearby hydrowells at different depths were collected to develop a correlation between the aquifer resistivity of VES and the electrical conductivity (EC) of the groundwater and to confirm the resulted geophysical resistivity models. From the correlation developed, it was observed that the groundwater salinity in the aquifer may be considered low and so safe for irrigation if resistivity >45 Ω m, and marginally fit for irrigation having resistivity between 25 and 45 Ω m. The study area has resistivities from 3.9 to 2,222 Ω m at the top of the unsaturated layer, between 1.21 and 171 Ω m, in the shallow aquifers, and 0.14–152 Ω m in the deep aquifers of the study area. The results indicate that the quality of groundwater is better near the rivers and in the shallow layers compared to the deep layers.  相似文献   

17.
This research is an attempt to accomplish a 3-D resistivity imaging survey, which was carried out near a water well contaminated with hydrocarbon materials in Karbala governorate. Two-dimensional resistivity imaging measurements were collected along four parallel profiles, using a Wenner array with electrode spacing of 1 m. The RES3DINV program was used to invert the apparent resistivity data. The results displayed a resistivity distribution of the subsurface in a three-dimensional volume. Thus, both the horizontal and vertical extents of the contaminated zone were displayed. This technique revealed a low resistivity zone at depth ranges from 3 to 6 m in the investigation area, but the seepage starts at depth ranges between 2 and 3 m and continues down depth (may be to the groundwater level). This low resistivity zone is the most likely location for a subsurface seepage of contaminated water. It is clear that the sufficient measurement points along 2-D lines in a small area can increase the 3-D imaging resolution, and nearly real 3-D imaging can be achieved, when the size of subsurface anomaly compared with the electrode spacing (a) of the Wenner array is taken into consideration.  相似文献   

18.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

19.
Information generated from geophysical, geochemical and hydrogeological data has been used in assessing the groundwater resource potential, quality and usability and in mapping flow directions within the shallow subsurface of the Mamfe Embayment, Cross River State, Nigeria. The electrical resistivity technique in which the Schlumberger’s vertical electrical sounding field procedure has been adopted was the geophysical method employed; lithology logs from drilling records, discharge rates, static water level information were the hydrogeological information utilized, while the geochemical techniques involve analyses of water samples. Apparent resistances were measured using different resistivity meters including OYO McOhm (model 2115), ABEM terrameter (SAS300B and SAS1000 models) and IGIS (SSP-ATS-MRP model) with maximum current electrode separation reaching 1 km in some communities. Geological information was used as control in the modelling and interpretation of all geophysical data. The physico-chemical parameters of the water samples from the different water sources in the area were determined using different analytical techniques and in some cases, by in situ direct measurement of some parameters. Measured values of electrical conductivity, static water level, available aquifer discharge information and calculated SAR and %Na were integrated into the geophysical and hydrogeological results. The shallow subsurface of the area is segmented into four hydrogeological provinces [crystalline basement province (CBP), Cross River Plain Province (CRPP), Nkporo-Afikpo Shales Province (NASP) and alluvial/buried river province (ABRP) with localized groundwater flow patterns]. Results indicated that the alluvial (discharge rate of 3.83 L/s), fractured sandstone (discharge rate of 2.43 L/s) and basement (discharge rate of 1.80 L/s) aquifers are more yielding than the aquifers in areas covered with deformed shales (discharge rate of 0.62 L/s) and siltstone aquifers (discharge rate of 0.97 L/s). The aquifer horizons are inhomogeneous and anisotropic with topography and lithology exerting significant influence on groundwater flow direction. However, there appears to be some high yielding aquifers at depths greater than 100 m in the CRPP areas although researches on their distribution are still ongoing. Precipitation is the major source of recharge and the water is enriched with Na+, K+, Ca2+, Mg2+, ${\text{HCO}}_{ 3}^{ - }$ , Cl?, ${\text{SO}}_{ 4}^{2 - }$ and ${\text{NO}}_{ 3}^{ - }$ throughout the year. Graphical analyses of hydrochemical data using Piper and Stiff diagrams show that Ca–(Mg)–CO3–HCO3 is the dominant water facies. Results from EC, SAR and %Na show that the water is fresh and belongs to the good-to-excellent class and is, therefore, suitable for domestic, agricultural and industrial use.  相似文献   

20.
岩溶介质具有较强的非均质性,其地表及地下的岩溶结构形态多样。通过对钻孔结构描述、钻孔水物化性质分析,不仅能够掌握区域上岩溶含水层的结构特征,而且对于岩溶地下水演化过程的揭示亦有重要作用。文章以桂林岩溶水文地质试验场西南部峰丛山区与峰林平原交界处的钻孔为例,通过野外便携式多参数仪原位测试钻孔垂向水物化指标(pH值、水温T、电导率EC),探索浅部(地面以下约50 m内)地下岩溶较为发育条件下钻孔水物化指标的垂向变化特征,揭示岩溶介质非均质性对钻孔垂向水物化指标的影响。结果表明:岩溶地区小范围内不同钻孔间的水物化性质有所差异,且岩溶发育相似的钻孔(如ZK4/ZK5、ZK7/ZK8),其水物化指标垂向变化具有一定的相似性,但不同指标(T、pH、EC)的变化幅度存在差异;钻孔水物化性质受到试验场区岩溶介质结构非均质性的控制,即岩溶介质结构影响了地下水的赋存条件和水力联系而导致水物化性质的差异;在对岩溶地区地下水物化性质进行研究时应充分考虑岩溶介质的非均质性特征,根据实际的水文地质条件选取具有代表性的钻孔含水段进行取样和监测。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号