首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.  相似文献   

2.
Few studies of wave propagation in layered saturated soils have been reported in the literature. In this paper, a general solution of the equation of wave motion in saturated soils, based on one kind of practical Biot‘s equation,was deduced by introducing wave potentials. Then exact dynamic-stiffness matrices for a poroelastic soil layer and halfspace were derived, which extended Wolf‘s theory for an elastic layered site to the case of poroelasticity, thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site. By using the integral transform method, Green‘s functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given. Finally, the theory was verified by numerical examples and dynamic responses by comparing three different soil sites. This study has the following advantages: all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications. The present theory can degenerate into Wolf‘s theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.  相似文献   

3.
The scattering of SV waves by a canyon in a fluid-saturated, poroelastic layered half-space is modeled using the indirect boundary element method in the frequency domain. The free-field responses are calculated to determine the displacements and stresses at the surface of the canyon, and fictitious distributed loads are then applied at the surface of the canyon in the free field to calculate the Green's functions for displacements and stresses. The amplitudes of the fictitious distributed loads are determined from the boundary conditions, and the displacements arising from the waves in the free field and from the fictitious distributed loads are summed to obtain the solution. The effects of fluid saturation, boundary conditions, porosity, and soil layers on the surface displacement amplitudes and phase shifts are discussed, and some useful conclusions are obtained. It is shown that the surface displacement amplitudes due to saturation and boundary conditions, different porosities, or the presence of a soil layer can be very dissimilar, and large phase shifts can be observed. The resulting wavelengths for an undrained saturated poroelastic medium are slightly longer than those for a drained saturated poroelastic medium; and are longer for a drained saturated poroelastic medium than those for a dry poroelastic medium. As porosity increases, the wavelengths become longer; and a layered half-space produces longer wavelengths than a homogeneous half-space.  相似文献   

4.
尤红兵  梁建文  赵凤新 《地震学报》2011,33(6):735-745,843
利用饱和土层的精确动力刚度矩阵和动力格林(Green)函数,采用间接边界元法,在频域内求解了层状饱和场地中任意凹陷地形对入射SV波的散射问题.通过自由场反应分析,求得凹陷地形表面各点的位移和各单元的应力响应;同样计算了虚拟分布荷载的格林影响函数,求得相应的位移和应力响应;根据边界条件确定虚拟分布荷载,将自由场位移响应和...  相似文献   

5.
Lateral dynamic compliance of pile embedded in poroelastic half space   总被引:2,自引:0,他引:2  
The time-harmonic response of a pile in a poroelastic half space and under lateral loadings is studied. By treating the pile as a one-dimensional structure and the half-space as a three-dimensional poroelastic continuum, the dynamic interaction between a pile and a poroelastic medium is formulated as a Fredholm integral equation of the second kind. Green's functions for a distributed lateral force field acting inside a poroelastic half space is an important ingredient of this paper. Numerical results for lateral dynamic compliance functions are presented to illustrate the dynamic characteristics of a pile in a poroelastic half space.  相似文献   

6.
三维层状场地的精确动力刚度矩阵及格林函数   总被引:3,自引:1,他引:3  
本文对Wolf二维层状场地精确动力刚度矩阵进行推广,给出了三维层状场地的精确动力刚度矩阵。刚度矩阵具有对称的特点,且因刚度矩阵是精确的,计算结果不受土层单元厚度的影响,可以大大提高计算效率。文中对刚度矩阵进行了数值验证。利用三维层状场地动力刚度矩阵,计算分析了基岩上单一土层场地的动力响应。最后作为动力刚度矩阵的另一重要应用,给出了表面或埋置矩形均布荷载或集中荷载的动力格林函数计算方法。  相似文献   

7.
平面SV波在饱和半空间中沉积谷地周围的散射   总被引:1,自引:0,他引:1  
采用一种特殊的间接边界积分方程法,求解了平面SV波在饱和半空间中任意形状沉积谷地周围的二维散射问题。结合饱和半空间中膨胀波源和剪切波源格林函数,由分布在沉积和半空间交界面附近两虚拟波源面上的波源分别构造沉积内外的散射波场,由交界面连续条件建立方程并求解确定虚拟波源密度,总波场反应即可由自由波场和散射波场叠加而得。然后通过边界条件验算、退化解答与现有结果的比较以及稳定性检验,验证了方法的计算精度。通过一组典型算例,研究了平面SV波在饱和半空间中沉积谷地周围散射的基本规律,详细给出了不同参数情况沉积谷地附近地表位移幅值和孔隙水压,着重分析了入射SV波频率和角度、边界渗透条件、沉积孔隙率等因素对场地反应的影响,得出了一些有益的结论。  相似文献   

8.
层土动力Green函数数值计算中若干问题的探讨   总被引:2,自引:0,他引:2  
动力Green子数数值计算技术是动力边界元法得以实施的关键技术之一。本文 无对两类层状介质动力Green函数的频域解进行了比较,在此基础上,文中着重探讨了在土-结构相互作用问题中应用显式动力Green函数时的若干数值计算问题,包括土层的子层离散和波数的计算以及半空间的模拟等。  相似文献   

9.
Soil–structure interaction problems are typically modelled by assuming subgrade behaviour to be either elastic or viscoelastic. Herein, compliance functions that may be used to solve soil–structure interaction problems are evaluated by treating the subgrade as a liquid-saturated poroelastic material whose behaviour is governed by Biot's theory. The compliances are evaluated for the harmonic rocking and vertical motions of rigid permeable and impermeable plates bearing on a poroelastic halfspace. Comparisons are made with elastic solutions which assume the subgrade to be either completely drained or undrained. Also, solid and fluid contact stresses are reported for the poroelastic case and compared to the solid contact stresses for the elastic cases.  相似文献   

10.
Linear in-plane soil–structure interaction in two dimensions (2D) is studied in fluid-saturated, poroelastic, layered half-space using the Indirect Boundary Element Method (IBEM). The structure is a shear wall supported by a rigid embedded foundation. Exact stiffness matrices for the soil layer and half-space, and Green׳s functions of uniformly distributed loads and pore pressure on an inclined line are derived. Results of the system response in the frequency domain are presented for the special case of single soil layer over bedrock, semi-circular foundation and zero seepage force. The effects of water saturation, soil porosity, depth of soil layer, rigidity contrast between layer and bedrock are investigated in the frequency domain for incident plane P- and SV waves. The results suggest that water saturation may cause increase of the system frequency by more than 10%.  相似文献   

11.
Diffraction of plane SV waves by a cavity in poroelastic half-space   总被引:2,自引:0,他引:2  
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green’s functions of compressive and shear wave sources are derived based on Biot’s theory. The scattered waves are constructed using fi ctitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verifi cation of the accuracy is performed by: (1) checking the satisfaction extent of the boundary c...  相似文献   

12.
Vertical vibration of an embedded rigid foundation in a poroelastic soil   总被引:4,自引:0,他引:4  
This paper considers time-harmonic vertical vibration of an axisymmetric rigid foundation embedded in a homogeneous poroelastic soil. The soil domain is represented by a homogeneous poroelastic half space that is governed by Biot's theory of poroelastodynamics. The foundation is subjected to a time-harmonic vertical load and is perfectly bonded to the surrounding half space. The contact surface can be either fully permeable or impermeable. The dynamic interaction problem is solved by employing an indirect boundary integral equation method. The kernel functions of the integral equation are the influence functions corresponding to vertical and radial ring loads, and a ring fluid source applied in the interior of a homogeneous poroelastic half space. Analytical techniques are used to derive the solution for influence functions. The indirect boundary integral equation is solved by using numerical quadrature. Selected numerical results for vertical impedance of rigid foundations are presented to demonstrate the influence of poroelastic effect, foundation geometry, hydraulic boundary condition along the contact surface and frequency of excitation.  相似文献   

13.
This review type of paper shows how the poroelastodynamic theory of Biot can be applied to some soil dynamics problems encountered in transportation engineering, which have been solved by the present authors. These problems involve rigid walls retaining poroelastic soil and subjected to harmonic seismic waves and moving loads on poroelastic soil. Both classes of problems involve a soil layer over bedrock, are of the plane strain type and are solved analytically by two methods: a direct (almost exact and exact for the above two classes of problems) method and an approximate method. The effects of shear modulus, porosity, permeability and hysteretic damping of the soil medium as well as the seismic frequency for retaining walls and velocity for moving loads on the dynamic response are numerically evaluated in order to assess their relative importance on that response.  相似文献   

14.
平面SV波在层状半空间中沉积谷地周围的散射   总被引:2,自引:0,他引:2  
采用间接边界元方法求解了入射平面SV波在层状半空间中沉积谷地周围的散射问题.问题的解答包含自由场和散射场两部分.自由场可由直接刚度法求得,散射场由层状半空间中斜线荷载动力格林函数来模拟.文中以入射平面SV波在基岩上单一土层中沉积谷地周围散射为例研究了土层和沉积谷地周围的影响.结果表明,由于考虑了土层的动力特性,平面SV...  相似文献   

15.
Vibration isolation of structures from ground-transmitted waves by open trenches in isotropic, linearly elastic or viscoelastic soil with a shear modulus varying continuously with depth is numerically studied. Both an exponential and a linear shear modulus variation with depth are used in this work. Waves produced by the harmonic motion of a rigid surface machine foundation are considered. The problem is solved by the frequency domain boundary element method employing the Green's function of Kausel-Peek-Hull for a thin layered half-space. Thus only the trench perimeter and the soil-foundation interface need essentially to be discretized. The proposed methodology is first tested for accuracy by solving two Rayleigh wave propagation problems in nonhomogeneous soil with known analytical solutions and/or for which experimental results are available. Then the method is applied to vibration isolation problems and the effect of the inhomogeneity on the wave screening effectiveness of trenches is studied.  相似文献   

16.
An approximate analytical method is presented for the dynamic response of a rigid cylindrical foundation embedded in a poroelastic soil layer under the excitation of a time-harmonic rocking moment. The soil underlying the foundation base is represented by a single-layered poroelastic soil based on rigid bedrock while the soil along the side of the foundation is modeled as an independent poroelastic stratum composed of a series of infinitesimally thin layers. The accuracy of the present solution is verified by comparisons with existing solutions obtained from other researchers. Numerical results for the rocking dynamic impedance and dynamic response factor are presented to demonstrate the influence of nondimensional frequency of excitation, poroelastic soil layer thickness, depth ratio of the foundation and internal friction of the poroelastic soil.  相似文献   

17.
列车引起场地振动的建模需要能够表达地层的动力格林函数.本文兼顾饱和土的流固两相耦合性、场地土的分层性和波动的三维传播性,构建了半解析的场地动力格林函数.首先,基于Biot方程,在傅里叶变换域求解固体骨架和流体的位移和应力.然后采用传递矩阵方法建立地表位移和应力间的关系,得到格林函数矩阵.进而讨论矩阵的一些固有特征,提出改善竖向位移计算效率的措施.最后利用推导的格林函数计算了几个典型算例.数值结果与文献中其他方法得到的结果十分接近,与场地振动的现场观测试验基本符合.软土场地振动的计算结果高于饱和砂土场地,高速列车场地振动强度高于低速列车.当车速接近场地瑞利波速,模拟结果中显示出马赫锥.数值结果还显示,即使车速略低于瑞利波速,马赫锥也可能出现.本文推导的格林函数将有助于深入理解列车等移动激励作用下层状饱和土场地的振动特征.  相似文献   

18.
Dynamic effects of moving loads on road pavements: A review   总被引:3,自引:0,他引:3  
This review paper deals with the dynamic response of road pavements to moving loads on their surface. The road pavement can be modeled as a beam, a plate, or the top layer of a layered soil medium. The foundation soil can be modeled as a system of elastic springs and dashpots or a homogeneous or layered half-space. The material behavior of the pavement can be elastic or viscoelastic, while that of the foundation layers elastic, viscoelastic, water-saturated poroelastic or even inelastic. The loads are concentrated or distributed of finite extent, may vary with time and move with constant or variable speed. The analysis is done by analytical, analytical/numerical and purely numerical methods, such as finite element and boundary element methods, under conditions of plane strain or full three-dimensionality. A number of representative examples is presented in order to illustrate the problem and the methods of analysis, demonstrate the dynamic effects of moving loads on the layered soil medium and indicate the implications of the results on road and airport pavement design.  相似文献   

19.
The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obliquely incident SV waves. A wave-number transform is first applied along the valley’s axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is confirmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are discussed in detail resulting in some conclusions.  相似文献   

20.
层状半空间中周期分布凸起地形对平面SH波的散射   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种新的以层状半空间中周期分布斜线荷载动力格林函数为基本解的间接边界元方法,研究了周期分布凸起地形对平面SH波的散射问题.方法将散射波场分解为凸起内部散射波场和凸起外部散射波场.凸起内部散射波场通过在凸起闭合边界上施加虚拟斜线荷载产生的动力响应来模拟,而凸起外部散射波场则通过在凸起与半空间交界面上施加虚拟周期分布斜线荷载产生的动力响应来模拟.周期分布斜线荷载动力格林函数的引入,使得本文方法仅需针对一个凸起进行边界单元的离散和求解,便可完成问题的求解,避免了通过截断无限边界求解而引入的误差,方法具有较高精度的同时显著降低了求解自由度.文中通过与已有结果的比较,验证了方法的正确性,并以均匀半空间和基岩上单一土层中周期分布凸起为例进行了数值计算分析.研究表明,凸起间距对凸起地形间的动力相互作用有着显著的影响,同时层状半空间中周期分布凸起地形对SH波的散射与均匀半空间情况也有着显著的差别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号