首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The paper presents a theoretical and an experimental investigation into the plastic collapse of circular steel corrugated cylinders under external hydrostatic pressure. The experimental investigation gives a detailed study of 9 steel corrugated cylinders which were tested to destruction. Six of these cylinders failed by plastic non-symmetric bifurcation buckling and three failed by plastic axisymmetric deformation. The results of these tests were used, together with the results obtained from previous tests, to present a design chart for the plastic collapse of these vessels. The design chart was obtained by a semi-empirical approach, where the thinness ratios of the vessels were plotted against their plastic knockdown factors. The process of using the design chart is to calculate the theoretical elastic instability pressure for a perfect vessel by the finite element method and also to calculate the thinness ratio for this vessel. Using the appropriate value of the thinness ratio, the plastic knockdown factors are obtained from the design chart. To obtain the actual collapse pressure of the vessel, the theoretical elastic instability pressure for a perfect vessel is divided by the plastic knockdown factor. This work is of importance in ocean engineering. A large safety factor must also be introduced.  相似文献   

2.
The paper describes experimental tests carried out on three ring-stiffened cones that were tested to destruction under external hydrostatic pressure. The cones were carefully machined from EN1A Steel. All three cones failed by plastic non-symmetric bifurcation buckling in a mode commonly known as general instability. In this mode the entire ring-shell combination buckles bodily.The paper also provides a design chart using the results obtained from these three vessels, together with the results of six other vessels obtained from other tests. The design chart allows the possibility of obtaining a plastic knock down factor, so that the theoretical buckling pressures, based on elastic theory, can be divided by the plastic knockdown factor, to give the predicted buckling pressure. This method can also be used for the design of full-scale vessels.  相似文献   

3.
This paper reports on experimental work carried out on nine thin-walled circular cylinders which were tested to destruction under external hydrostatic pressure. Seven of the cylinders failed through non-symmetric bifurcation buckling and two failed through axisymmetric collapse. The results were used from these tests, together with the results from other experiments, to produce a design chart which could be used for designing against the occurence of elastic and inelastic shell instability.  相似文献   

4.
The paper presents a theoretical and an experimental investigation into the buckling of seven oblate hemi-ellipsoidal dome shells under external hydrostatic pressure. Four of the shells were made in glass reinforced plastic and three were made from a thermosetting plastic called solid urethane plastic. All the vessels were tested to destruction. The theoretical study was made with the aid of a non-linear finite element solution, where both geometrical and material non-linearity were allowed for. Good agreement was found between experiment and theory for all the vessels. The very oblate domes failed axisymmetrically. Theoretical convergence was good for the more oblate domes but it was not as good as for the less oblate domes. This may have been because the less oblate domes did not fail in a classical axisymmetric manner as was expected. This work is of much importance in ocean engineering.  相似文献   

5.
A theoretical and an experimental investigation was carried out, where a carbon fibre corrugated circular cylinder was tested to destuction under external hydrostatic pressure. The theoretical investigation was via the finite element method, where the structure was modelled with several orthotropic axisymmetric thin-walled shell elements. The experimental observations were aided with strategically placed strain gauges. Comparison between theory and experiment showed that the experimentally observed buckling pressure was a little lower than the theoretical prediction. This may have been due to the fact that the model had slight initial geometrical imperfections in the circumferenential direction.  相似文献   

6.
The paper reports on a theoretical and an experimental investigation into the buckling and vibration of prolate hemi-ellipsoidal tube-stiffened domes under external water pressure. The theoretical analyses were via the finite element method, where both the fluid and the structure were modelled with finite elements. The dome was modelled with a varying meridional curvature element and with eight displacement degrees of freedom and the water was modelled by solid annular elements where each element had eight pressure degrees of freedom in its cross-section. Comparison was good between experiment and theory.  相似文献   

7.
The new simple design equations for predicting the ultimate compressive strength of stiffened plates with initial imperfections in the form of welding-induced residual stresses and geometric deflections were developed in this study. A non-linear finite element method was used to investigate on 60 ANSYS elastic–plastic buckling analyses of a wide range of typical ship panel geometries. Reduction factors of the ultimate strength are produced from the results of 60 ANSYS inelastic finite element analyses. The proposed design equations have been developed based on these reduction factors. For the real ship structural stiffened plates, the most general loading case is a combination of longitudinal stress, transverse stress, shear stress and lateral pressure. The new simplified analytical method was generalized to deal with such combined load cases. The accuracy of the proposed equations was validated by the experimental results. Comparisons show that the adopted method has sufficient accuracy for practical applications in ship design.  相似文献   

8.
The paper reports on the buckling of three ring-stiffened prolate domes under external hydrostatic pressure. The study was partly theoretical and partly experimental, where in the case of the latter, the finite element was used. Comparison between experiment and theory was good. The effect of ring stiffening the domes was to increase their buckling resistances by factors varying from 4.43 to 5.72.  相似文献   

9.
The failure of a ship hull girder is governed by buckling and plastic collapse of the deck, bottom and side shell steel stiffened plates. The stiffened steel plating in ships is generally subjected to both in-plane and out-of-plane loading and is more important to understand the characteristics of these panels under buckling. Tests are reported on the collapse load of stiffened plates with and without cutout and with reinforced cutout under uniaxial compression. A generalized computer program for the semi-analytical solutions proposed by various investigators based on strut approach and orthotropic plate approach, and a finite element analysis program based on orthotropic plate approach are developed. The panels are also analysed using the finite element analysis software ANSYS. An approximate method based on strut approach is proposed to calculate the collapse load of stiffened plates with cutouts and initial imperfections. The reduction in strength of the panels due to the presence of square cutout, rectangular cutout and increase in strength due to reinforcement around rectangular cutout are calculated based on the test results. Comparisons are made between the test results and predictions based on semi-analytical solutions and finite element analyses, and the uncertainty parameters calculated are discussed. Based on this study it is concluded that the cutout can be reinforced with a maximum increase in strength up to 19% for plate initiated failures.  相似文献   

10.
海底管线是海洋油气工程中主要的输送手段。在工作状态下,受高温高压的影响,深海管线可能会发生水平向整体屈曲。随海洋油气作业水深的增大,施加于管线的温度和压强也逐渐增加,导致管线产生较大的屈曲位移和截面应力,使得截面产生塑性应变。本文采用数值模拟方法,对海底管线整体屈曲过程中塑性区的分布及其与整体屈曲影响因素的关联性、塑性变形对水平向变形的影响和塑性变形造成的截面椭圆度的变化规律进行分析,研究塑性变形对整体屈曲过程影响的规律。  相似文献   

11.
谢鹏  岳前进  赵岩  吴新伟 《海洋工程》2015,33(2):110-115
随着S型海管铺设逐步走向深水,管道在铺设过程中承受的荷载增加,发生一定程度的塑性变形。本文讨论S型铺设引起的残余塑性变形对管道屈曲承载能力的影响。首先基于壳单元建立"管道-托辊"相互作用的局部有限元模型,分析了管道在铺设过程中的受力状态,获得了管道的残余塑性变形。然后以该残余变形作为管道非线性屈曲分析的初始缺陷,基于改进的RIKS方法计算了管道的临界屈曲压力。研究结果表明,铺设残余塑性变形在一定程度上削弱管道的承载能力,在深水铺设中应予以考虑。  相似文献   

12.
海洋生态系统动力学模型的可预测性是模型应用的重要限制因子之一,而模型稳定性则是模型可预测性的前提。本文提出了一个基于降维理论的方法,用于研究质量守恒的营养盐-浮游植物-浮游动物-碎屑(NPZD)这类海洋生态系统动力学模型的稳定性和Hopf分岔。研究结果显示,NPZD模型的非奇异平衡点是稳定的,而当模型参数在临界值附近变动时可能会发生Hopf分岔。同时,本文采用数值模拟的方法对该理论分析结果进行了实例验证。本文提出的基于降维理论的方法能够从理论上有效分析质量守恒系统的稳定性问题和Hopf分岔。  相似文献   

13.
The paper reports on a theoretical and an experimental investigation carried out on a thin-walled hemi-ellipsoidal prolate dome in air and also under external water pressure. The investigation found that there was good correlation between experiment and theory. The theoretical investigation was carried out using the finite element analysis to model both the structure and the fluid. The theoretical investigation used two different programs, one of which was the giant computer program ANSYS and the other was an in-house program developed by Ross. For the shell structure, the ANSYS program used 2 different doubly curved thin-walled shell elements, while the in-house program used a simpler axisymmetric thin-walled shell element. This axisymmetric element allowed a sinusoidal variation of the displacements in the circumferential direction, thus, decreasing preparation and computational time. Agreement between the 3 different finite elements was found to be good. This was found particularly encouraging for the in-house software, as it only took a few hours to set up the computer model, and a few seconds to analyse the vessel, whereas the ANSYS software took several weeks to set up the computer model, and several minutes to analyse the shell dome. The ANSYS software, however, did have the advantage in producing excellent graphical displays in both the pre-processing and post-processing modes.  相似文献   

14.
With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.  相似文献   

15.
It was shown based on laboratory experiments in a Large Thermally Stratified Tank (LTST) at the Institute of Applied Physics of the Russian Academy of Sciences that a turbulent axisymmetric jet in a stratified fluid with a sharp density drop (a pycnocline) intensively generates internal waves. An axisymmetric oscillation mode, for which a sufficient condition of stability in the parallel flow approximation is met, served as their source. This paper studies the stability of a nonparallel flow (with self-similar velocity profiles) that simulates a jet flow in the lower part of the pycnocline with respect to the axisymmetric mode. The estimates of the axisymmetric mode near the pycnocline are in agreement with the experimental data. The signs of the self-oscillating mode of the jet were experimentally revealed and the possibility of self-oscillations was theoretically proved: it was shown that the flow in the pycnocline vicinity is absolutely unstable.  相似文献   

16.
The paper presents a non-linear buckling analysis of ring stiffened cylindrical shells subject to external pressure. The collapse pressure is calculated by assuming failure to occur when the material reaches a plastic stress state defined by the Ilyushin criterion. It is shown in the paper that use of the non-linear theory can reduce the estimated first yield by up to 25% in comparison to the linear buckling analysis used up to now. Comparison of predicted failure loads are in good agreement with the lower bound of test results.  相似文献   

17.
环肋圆柱壳体在水下冲击波作用下的动力弹塑性屈曲   总被引:1,自引:0,他引:1  
本文以加肋圆柱壳体为对象建立力学模型,在水下爆炸产生的冲击波作用下,考虑流体与结构的耦合效应,研究加肋圆柱壳体的弹塑性失稳变形量及动力响应特性。数值分析显示出的最终变形形状和压力变化过程与实验资料一致的  相似文献   

18.
Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Recently, it has been proposed to suppress low-dimensional chaos with the notch filter feedback control method, which can be implemented in a laser system. In this work, we have analytically determined the controllable conditions for notch filter feedback controlling of Chen chaotic system in terms of the Hopf bifurcation theory. The conditions for notch filter feedback controlled Chen chaoitc system having a stable limit cycle solution are given. Meanwhile, we also analysed the Hopf bifurcation direction, which is very important for parameter settings in notch filter feedback control applications. Finally, we apply the notch filter feedback control methods to the electronic circuit experiments and numerical simulations based on the theoretical analysis. The controlling results of notch filter feedback control method well prove the feasibility and reliability of the theoretical analysis.  相似文献   

19.
采用卷管法铺设管道时,管道和铺设设备之间的接触作用十分复杂,并且管道在弯曲过程中将会产生塑性变形并可能发生局部屈曲,导致管道失效。基于有限元模型(FEM)实时模拟卷管法安装的整个过程,研究管道与铺设设备之间的接触作用;分析管道对于环境载荷和船体运动的动态响应;获得管道的应力应变值以校核局部屈曲。研究结果表明,管道弯矩大部分来源于管道与安装设备间的接触作用,而环境载荷及船体运动对管道的弯曲应力影响较小。  相似文献   

20.
Offshore oil and gas exploration are gradually heading toward the deep sea and even the ultra-deep sea. According, the working temperature and pressure intensity of subsea oil and gas pipelines have increased by a considerable degree. This situation is accompanied by the global buckling problem in deep sea pipelines, which has become increasingly common. Meanwhile, ordinary single-layer pipelines cannot last for a long time under harsh deep-sea working conditions. Thus, multilayer pipelines, such as the pipe-in-pipe (PIP) structure and bundled pipelines, have gradually become top choices. However, the global buckling mechanisms of these multilayer pipelines are more complicated than those of single-layer pipelines. The sleeper–snake lay pipeline, which is an active control method for global buckling, was used in this study. The change and development laws of global buckling in a PIP structure at different wavelengths and amplitudes were determined through an experimental study. A dynamic solution method that considers artificial damping was adopted to establish finite element global buckling models of a PIP structure with initial imperfections. The effects of various factors, such as pipeline laying shape, sleeper–pipe function, and seabed–pipe function, on global buckling were analyzed. By the result of finite element method analysis, the initial imperfection, and sleeper–pipeline friction were determined to be the key factors that influenced critical pipeline buckling force. Accordingly, a reference for the design of PIP structures is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号